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ABSTRACT. The dynamic behavior of the mercury damper
is investigated. Particular attention is paid to the
eccentric annular mercury configuration, which is the
final continuous ring phase which occurs in the opera-
tion of ;ýIl mercury dampers. In this phase the damp-
ing is the poorest, and the system is closely linear.
The crescent, or broken-ring, case is also considered.

During the course of the investigation the hydro-
dynamic problem is treated as three dimensional, and
extensive use is made of a variational principle of
least viscous frictional power loss, which is derived.
A variational principle of least constraint is also
used to advantage. Formulas for calculating the be-
havior of the mercury damper are obtained.DDC
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INTRODUCTION

The purpose of the present investigation is to examine
the dynamic behavior of the mercury damper, and to devise
means for calculating this behavior. Since mercury dampers
can operate in several different ways, depending upon the
mercury configuration, the nature of the inner free surface,
and the state of turbulence; and since any given damper
operates in at least two very different manners, the over-
all behavior of a mercury damper may appear to be both
complex and peculiar.

It will be seen that any mercury damper acts more ef-
fectively when the mercury forms a broken ring than when it
forms a continuous ring. It follows that the transition
from a broken ring to a continuous ring, which occurs in anI
case during the course of the damping, corresponds to a
transition from a more effective to a less effective action
of the damper. It is particularly important that the be-
havior of the damper in this unfavorable "continuous ring"
case be analyzed; and a considerable portion of this report
is devoted to this analysis. The more favorable broken ring
case is also treated; however, it is very much simpler tha~n
the unfavorable case just mentioned.

It will be shown that the viscous frictional power loss
in the mercury is of primary importance in eliminating the
precession, or wobble; also that this loss satisfies a mini-
mum principle which constitutes a powerful tool for deter-
mining the velocity distribution in the mercury, and hence
the power loss itself. The pressure distribution is deter-
mined using another variational principle--the principle of
least constraint--which is devised for this purpose.

It will be shown that when the wobble is small and the
mercury is in the unfavorable continuous ring configuration
the system is approximately linear, and its behavior is
described by linear differential equations with constant co-
efficients. The usual methods £0o handling such equations
can hence be applied. This is not true when the wobble is
larger and the mercury is in the broken ring configuration.
In both cases, however, specific formulas are obtained for
calculating the behavior of the system (see Appendix B).
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MECHANICAL SYSTEM. STATEMENT OF PROBLEM

The mercury damper consists of a circular channel, or
race, partially filled with mercury, as shown in the figure
below. Two such dampers are mounted with their planes

mercury

perpendicular to the axis of symmetry of the main spinning
body, and with their centers lying on this axis on opposite
sides of the center of gravity of this body and equally spac-
ed from it, as shown in the following figure. By using two

damper

/ • gravity

dampe symmetry

2
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dampers the translational effects on the main spinning body
cancel, whereas the rotational effects add. We shall suppose
that the ratio of the principal moments of inertia of the
main body at its center of gravity and the initial motion
given to this body are such that this body precesses about
an axis which passes through the center of gravity and ap-
proximates the spin axis, the angular velocity of precession
exceeding that of spin. More exactly let

A = moment of inertia of the main

body about its axis of symmetry,

B = moment of inertia of the main body
about a transverse axis through its (1)
center of gravity,

P = angular velocity of spin,

= angular velocity of precession;

then

AvA> 1  and p=-closely. (2)

It will evidently suffice to consider one of the two dampers;
hence looking down upon the upper damper shown in the figure
at the bottom of page 2 the channel, or race, containing the
mercury appears as shown below. The center of the channel
is S, which point is also the point of intersection of the
spin axis with the plane of the daraper. The channel rotates

channelS/ for mercury

precessionW S
axis

3

______..... ... ____ ____ ___'



NAVWEPS REPORT 8611

about point S with angular velocity P; however, in addition
point S rotates about W, the poiILt of intersection of the
precession axis with the plane of the damper, with angular
velocity ft. We have seen that P > P.

Let us observe the damper from a reference system which
rotates about the precession axis with angular velocity /
counterclockwise; then the velocity vector V and the acceler-
ation vector A of any particle of mercury will be composed
of components as follows:

V = VR + VL, (3)

A =AR + AL + A (4)

where

VR and AR are the relative velocity and
relative acceleration vectors,
respectively, seen while riding
with the moving reference system,

VL and AL are the locked velocity and
locked acceleration vectors, re-

spectively, which the particle
would have if it were locked with
the moving reference system,

AC = 27x VR = Coriolis acceleration vector,

3 = precessional angular velocity vector.

The acceleration components AL and AC can evidently be re-
placed in effect by two systenf of inertia forces of inten-
sities (-AL) and (-Ac) per unit mass, respectively. Our
problem thus becomes one in w~ich we may regard ourselves as
being stationary, and the velocity and acceleration of a
mercury particle as being given by VR and AR, respectively.
The main body now apparently rotates clockwise about the spin
axis, which passes through the stationary point S, with an
angular velocity (0-v). Two body forces are acting: the
centrifugal force of intensity (-AL) per unit mass, and a
"Coriolis force" of intensity (-Ac).

The centrifugal force, which corresponds to tho locked
accele-ation, is

Centrifugal force = r/ 1 r per urit mass (6)

4



NAVWEPS REPORT 8611

where r is the radial distance from W, and Ir is a unit vector
pointing radially outward from W. Equation 6 is evidently the
negative gradient of the potential function

* = - r 2 per unit mass. (7)

The Coriolis force, which corresponds to the Coriolis acceler-

ation, is

Coriolis force = - 2 x VR per unit mass. (8)

Let us temporarily neglect the friction between the
mercury and the channel; then the mercury will appear to be
at rest, and VR = 0, AR = 0. The Coriolis force field there-
fore vanishes, and the mercury is at rest under the influence
of the centrifugal force field alone. Since the force acting
on a particle of mercury which lies on the free surface must
act normal to this surface it follows from Eq. 6, or from
Eq. 7 and the fact that the surface must be one of constant
4, that r is constant on this surface. Seen from above, the
free surface thus appears to be circular. For sufficiently
small values of the distance Wp the mercury is shaped like
an eccentric cam, the outer circular boundary being centered
on S, and the inner circular boundary being centered on W as
shown in the figure below. The outer boundary is the channel
wall; the inner boundary is a free surface, the radius of
which is dictated by the amount of mercury in the damper.

channel
wall

free
surface

S . .. • d i• • •r
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As WS is increased a situation arises wherein the two
circles become tangent, after which the mercury becomes
crescent-shapr.'. Since the total volume of mercury remains
constait, tche T-adius of the inner circle increases after the
mercury has become crescent-shaped.

Other nmercury configurations will be obtained if the
inner radius of the channel is so large that it forms part
of the i -ter boundar.y of the mercury surface, which could
happen in the eccentric annular shape, the crescent shape,
or both. We thus have four possible cases, which arise from
the fact that. for either the eccentric annular or the cres-
cent configuration the inner surface of the mercury can be
either entirely free or only partially free.

Next let us suppose that the friction between the mercury
and the channel, which was neglected above, is now "gradually
turned on;" then since the channel is apparently rotating
clockwise with an angular velocity (P-z) the mercury tends to
be dragged clockwise. If the mercury is in a crescent con-
fiquration the channel rotates clockwise relative to the
mercury body as a whole with an angular velocity (P-v), and
the center of gravity of the mercury will shift somewhat off
of the extension of line WS in the clockwise sense.

•f the mercury is in an eccentric annular configuration
tle mercury flows in the clockwise sense, the result being
to reduce the velocity of the mercury relative to the channel.
The mercury is dragged clockwise, and its axis of symmetry
shifts from the line WS in the clockwise sense. Supposing
that the inner free surface of the mercury can still be repre-
sented with sufficient accuracy by a circle, it follows that
I, the center of this circle, shifts from W to a new position
which lies somewhat above the line WS.

The various mercury configurations described ibove in the
case of no friction are still possible with friction acting.
In addition the mercury flow can in each case be either lami-
nar or turbulent. In view of this and the fact that the mer-
cury may be either eccentric annular or crescent shaped, and
the inner mercury surface may be either entirely free or only
partially free, we see that the mathematical analysis of the
mercury damper involves the consideration of eight distinct
cases. Which of these cases will. exist at any time depends
upon v, A/B, WS, the inner and outer radii of the channel,
and the volume of mercury in the damper. In any given design
AB, the channel dimensions, and the volume of mercury are
fixed; also P is approximately fixed. As the damper functions,
however, WS decreases from its initial value to zero, and the
velocity of the mercury relative to the channel drops to zero.

6
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During this time all eight of the above cases will riot be
experienced, but three may be. In all damper designs the
last case will be that in which the mercury shape is eccen-
tric annular, the inner mercury surface entirely free, and
the flow laminar. Preceding this may be one wherein the
mercury shape is eccentric annular, the inner mercury sur-
face either ent.4rely or partially free, and the flow turbu-
lent. Finally, preceding this may be one wherein the mercury
is crescent-shaped, the inner surface but partially free, and
the flow turbu'.ent.

ACTION OF THE DAMPER UPON THE MAUN SPINNING BODY

Ws shall now calculate the force and torque exerted by
the mercury upon the channel walls, and henjce upon the main
spinning body. In so doing we shall view the system while
rotating counterclockwise with angular velocity /3, as de-
scribed in the previous section. We thus see the relative
velocity VR and the relative acceleration AR; and have a
centrifugal force field given by Eqs. 6 or 7, and a Coriolis
force field given by Eq. 8. Let

F = total force exerted by th.e channel walls
upon the mercu: y,

FL total centrifugal force exerted upon the
mercury,

Fc = total Coriolis force exerted upon the
mercury, (9)

VRO = relative velocity of the center of
gravity of the mercury,

ARO = relative acceleration of the center of
gravity of the mercury,

M = total mass of mercury;

then for translational equilibrium of the mercury mass taken
as a whole we have

F + FL + F A C W RO" (10)

Although we may see the mercury as flowing in some way, its
center of gravity will appear to be fixed; hence ARO - 0 and
Eq. 10 becomes

F- - F Fc. (11)

7

n a.. - mi m--m -• n -a- i n n uuu nnn nn mmlm



NAVWEPS REPORT 8611

Multiplying Eq. 6 by dm, the element of mass fnd inte-
grating over the entire mass of mercury, we obtain

= • S r 1r din. (12)FLr

But r', the vector from W to the center of gravity of the
mercury is given by

r = 1r di. (13)

Equation 13 in Eq. 12 gives

FL = M (3 o.4)

which is identical with the centrifugal force that would be
obtained if the entire mass were concentrated at the center
of gravity.

Turning to the Coriolis force FC we obtain from Eq. 8

F0C 2 ýM x VR dm 2PxS M VR dm. (15)

But, noting Eq. 9,

Y VRdm = total momentum of mercury = M VRO = 0, (16)
M

since VRO = 0 due to the fact that the center of gravity of
the mercury appears to be stationary. Equation 16 in Eq. 15
gives

Fc = 0. (17)

Equations 14 and 17 in Eq. 11 now give finally
-(18)

1 See Appendix A.

8
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Next, we shall determine the torque ebout point W that is
exerted by the mercury on its channel walls. Let

T torque vector about W of the forces which
the channel exerts on the mercury,

7L = torqiue vector about W of the centrifugal (19)
forces exerted on the mercury,

T = torque vector about W of the Coriolis
forces exerted on the mercury;

ther: for rotational equilibrium of the mercury mass taken as
a whole we have

d '
T + TL + r VR dm (20)

since W is a fixed point. Here the integral is the moment of
momentum, :;r angular momentum, and r is a vector from W to
the elementary mass din. Despite the fact that the mercury
appears to be flowing, the moment of momentum remains con-
stant; hence the right-hand side of Eq. 20 vanishes, and
Eq. 20 becomes

T = - " CO (21)

Noting Eq. 6 we see that the centrifugal force acting on
any elementary mass dm has a line of action which passes
through the precession axis, and hence has a zero moment
about this axis. Integrating over the entire mass it follows
that

TL = 0. (22)

Finally it follows from Eq. 8 that

T C MrX (PXVR) din, (23)
M

whence

½ -2 " , [(rV.R) P - (r-.1)VRJ din. (24)

Since r and •? are orthogonal r-P - 0, and the second term in
the integrand of Eq. 24 vanishes, leaving

9
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2c r-VRdm. (25)

Noting the figure below let us place

r = WS + r5  (26)

where WS is the vector from W to S, and rs is the vector

from S to the elementary mass din. Substituting Eq. 26 in
Eq. 25 we obtain

Tc 2P$ý (WS r )-V R dm

=- 20 WS dm - 2p rs'VR dm;

however the first term vanishes due to Eq. 16, leaving

'Tc 2 'vM r.VR dm. (27)

For either the eccentric annular shape or the crescent shape,
and for either laminar flow or turbulent flow the radial
component of VR at any element df is the negative of that
component at the element dm which is located symmetrically
opposite that plane of symmetry of the mercury which contains
the sAin axis, shown in the following figure. It follows

10
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that the contribution of the mercury which lies on one side
of this plane to the integral in Eq. 27 cancels the contri.-
bution of the mercury which lies on the other side; hence
the integral vanishes, and

Tc =0o. (28)

Equations 22 and 28 in Eq. 21 now give

S= 0. (29)

We thus see that the moment about the precession axis of the
forces exerted by the channel upon the mercury is zero. It
follows that the resultant of these forces passes through W,
and hence may be considered to act at W, as shown below.

w S

S• to cepter ofI " , gravity of
mercury

t is the force exerted by the channel on the mercury; hence
(-f) is the force exerted by the mercury on the channel, and
theoeby on the main spinning body, as shown in the following
figure. (-F) may be replaced by the two component vectors

111
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4

W F S
,

to center of gravity
"a of mercury

FI and F , the magnitudes of which are, noting Eq. 18,

IF1; - Inl sin 1 - M rop sin•1  - M yo(t 030)

IF 2 IFI cosI -14 re P2 cos# 1= M x oP2

where x. and y 0 are the x and y coordinates of the center of
gravity of the mercury measured with reference to a Cartesian
coordinate system having W as an origin and WS as the positive
x direction. Let

W ff(31)

then the moment of FI about the spin axis is, noting Eq. 30,

Moment exerted
by the mercury - T IF I4 MO (32)
about the spin Tz Ill
axis counterclockwise.

This a&ts in the same sense as P,, and, together with an aqual
moment due to the other damper, results in a rate of increase
of P given by

Ts 2My*t 2P

-2 -r " " A 0(33)

It should be noted that yo is negative.

F1 and FS give rise to torque vector components x and ',
respectively, about the center of gravity, of the main spin- Y
ning body as shown in the following figure, where noting the
figure at the bottom of page 2,

12
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y

w _-• s
TX

1-7, - F IL)
x (34)

'7 = IF, IL,

L being the distance, closely, between W and the center of
gravity of the main sninning body. Since the torque vector
of the external forces acting on this body about its center
of gravity is the velocity of the tip of its angular mo-
mentum vector H for the center of gravity, we see that the
torque vector components 7 and Yv, when multiplied by 2 toxYinclude the effect of the other damper, may be regarded as
velocity components of the tip of this vector. SJnce the H
vector lies along the precession axis and is of magnitude Av,
closely, we see, noting Eqs. 30 and 34, that 7r causes W to
move toward S with a speed X

Velocity component _ 21' IL

of W toward S A-v (35)

2My•P 2L

Av

It is this velocity that lines up the precession and spin
axes, and hence gets rid of the wobble.

Similarly, we see that T causes W to move in the y
direction with a speed

Velocity component 214IO 2Mx@L 2

of W in y direction A (36)

the factor 2 being put in to include the effect of the other
damper. This subtracts directly from the y component of the
velocity of S relative to W, the y component of the velocity
of S being due to the precession and equal to 4P. The effect
of this is to reduce the precessional angular yelocity"_Be
amount

13
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i2
i• 2MXo LZ

Reduction in precessional 0M(37)
angular velocity Avp (37)

since the angular velocity of S about W is the precessional
angular velocity.

Another effect of the velocity component of W in the y
direction, given by Eq. 36, is to shift the precession axis
off of the H vector for the main body. Noting the figure
below we see that although the H vector still passes through
W, the precession axis now penetrates the plane of the damper

sy

-/ Vwy

w w S
1

at W,, where at any instant

1I Vs~wy (38)• =Vsy- V wy"

Here vwy is given by Eq. 36, and

W' = t, v =3P.

Attention has already been called to the fact that the
translational effects of the two dzmpers cancel.

14
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RELATION OF THE VISCOUS FRICTIONAL POWER
LOSS TO THE TORQUE

The force P exerted by the channel on the mercury (see
figure at the bottom of page 11) arises through the action
of the stresses transmitted by the channel walls to the
mercury. These stresses consist of the normal stress, or
pressure, and the shear stress, which is due to the viscosi-
ty of the liquid. Taking moments about the spin axis, which
passes through S, we see that since the pressure contributes
nothing, the entir'e moment is contributed by the shear stress.
Noting Eq. 32 and the figure on page 12 we see that this mo-
ment is of magnitude IF1 1|,and, looking down from the top,
acts clockwlse on the mercury (figure below). Here the eccen-
tric annular shape is shown merely to fix ideas. At present

motion of mercury

motion of
channel

we are making no restriCtion upon the shape of the iercury.

Since the main body rotates with an apparent angular
velocity CO-v) clockwise, it delivers a power

P-Z I F 1 (P-&,) K - My04 a (0-v) (39)

to the mercury. Although the mercury is apparently flowing,
its kinetic energy remains constant; the potential energy

15
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which it has by virtue of the potential function, Eq. 7,
which arose because of the centrifugal force, is constant;
and the power delivered by the Coriolis force field is zero,
since the Coriolis force is everywhere perpendicular to the
velocity of the mercury.2 It follows that the entire power
(Eq. 39) is dissipated as heat, and is equal to the viscous
frictional power loss in the mercury. Substituting Eq. 39
in Eq. 35 we obtain

Velocity component 2 = 2,PL)
of W toward S t((-v) (40)

hence the viscous friction loss P is the primary factor in

the determination of L and hence in the elimination of the
wobble.

2 Instead of using the constancy of the potential energy

to show that the power delivered by the centrifugal force
field to the mercury is zero, we could also compute this
power directly; thus noting Eqs. 6 and 7 we have

Power delivered to v
mercury by centrifugal = - pV,'9Vdv -p SsV-VR-V'(#VR)]dv
force field v

where p is the density, and the integral extends throughout
the volume of the mercury. Applying the divergence theorem,
and noting that V.VR - 0 since the fluid is incompressible,
this becomes

Power delivered to
mercury by centrifugal p - pSa *VR I ma 0
force fiela

where r is the vector element of area, and the inte.gral ex-
tends over the mercury surface; for VR.J" = 0 because at this
surface VR is tangent tO the surface, and hence perpendicular
to the normal.

The fact that in the case of the eccentric annular shape
the mercury surface is not simply connected causes no diffi-
culty in ipplying the divergence theorem, for a plane cross-
cut could be introduced to render the surface simply connected
without altering the values of the integrils.

16
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MINIMUM PRINCIPLE FOR THE VISCOUS FPICTIONAL
POWER LOSS

Since the mercury is incompressible V.VR = 0, and at any
instant the lines of flow cannot terminate anywhez4, but must
be closed. It follows that at any instant the flow may be
considered to be composed of an infinite number of closed
elementary tubes of flow, figure below. Let us suppose that

the flow is stationary--that is, the flow pattern does not
change with time, it being remembered that while observing
this pattern we are rotating counterclockwise with an angular
velocity 0. We shall now show that if the flow is stationary,
and if the shape of the velocity field is held fixed. so that
the lines and tubes of flow are unaltered. then the flow wi~l
distribute itself among the various tubes in such a wayt -
the viscous frictional power loss-is a minimn.

Let u- choose a set of rectangular xyz~coordirate axes
to measure the apparent motion of the mlrcury; and let vx,
Vy, and v, denote the x, y, and z components of VR, respec-
tively; then the normal and shear stresses ino the '.iquid which
arise due to viscosity are, respectively,s

3 Rouse, Hurter. Fluid Mechanics for Hydraulic Engi-
neer?. New York, McGraw-Hill, 1938. Pp. 144.45.

17
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D v DVy Dv

x 2 ex 82z 2

(D V Dv
Dy Tx y = (41)1 =T =+-• ,• =(1

"/av ex ev a

The corresponding time rates of change of strain are, re-
spectively,

BVy 8zSy Dy ' z - --

ev ev D
' Y * 2Yv Y + Y(42)•xy - 'x-• +•,gy ;y-< "Dy,'4:

ý' vz I +a-
"V'x y; " v Dx-y +-

• x z x 8. "

Noting that the fluid is incompressible the viscous fric-
tional power loss per unit volume is hence

Power loss per =L.8 2[)Vx)3 O_ 2 +Ovz 2_

unit volume 2)

r v •D _y+ 8V 2+DV 8v 2 (43)

L\ Dy Dx / \DZ y / ox Oz J

Integrating throughout the volume of mercury we obtain for P,
the total viscous frictional power loss

(44)

+ "8 J + + + +v.

Holding the shape of the velocity field fixed let us give
VR d variation 5 VR, the corresponding variations in vx, v ,
and v being 6 v,, 6vy, and 8vz, respectively. At every p~int
OVR thus has the same direction as VR; hence it is really

18
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IVRI which is being changed. We require also that the varied
field satisfy the actual surfacc boundary condition that at
the solid boundary surface provided by the channel the fluid
velocity be that of the solid surface. We thus have at the
mercury surface

VR = relative velocity of solid bounding

surface at such a surface,
6 VR = 0 at a solid bounding surface, (45)

Shear stress tangent to a free surface = 0
for the actual velocity field.

The variation in P can now be obtained from Eq. 44, thus

+ r, ev v - + v "- (4v
+ . + a,,xLh7 , y • D 6z

+ e-x-) T-")J .(46)

Since
Dv D v

6x•x • y 6v , etc. (47)

it follows that Eq. 46 may be written

. -• I o 6v +-• 6vo.+/bOy • • y,-

,4v av /v (48)

+ +ax 6vJx dv.

+ a T .6 Bx a+

Tx- - 6Vx\ 6etc.
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Considering only the first term in the integrand of this
integral we have

3p 3 3 v X 6v, dydzdx. (49)43 yý. ýY x 8)"X

Integrating by parts this becomes

4j OvyzL-L- 6VXS [ 2 yz)dydz" yz x 22 6Vx dydzd (50)

where x,(y,z) and x 2 (y,z) are values of x on the surface.
There may be more than two such values, but this causes no
difficulty. Denoting the direction cosines of the normal to
the surface by cosa,, cos6,1 , cosy, Lq. 50 becomes

4f Y -,-. 6vxv cosa, da - dvr (51;
Laex v exa "

where the first integpal extends over the surface of the
meicury, and the second extends throughout its volume. Pro-
ceeding in the same manner with the other terms in the inte-
grand of Eq. 48, Eq. 48 becomes

r ýev e~~v y vcoS+ Vdvcs
6V Cosa + Vy 8vz

+ j\,-+ ,--./ (6 vx osP,. + 6, y cos=,)

ýOy 8V

+ v_ +-s'v•z• (6Vy cosy I + av z COsO 1)

(52)

S ++ X) (ayv ccsa + 6v, cosy,) da

Xv -8zv 1I
2, L•"!i" 8Vx+ 6-y OVy+ av=
J L V ax "X Byv vy a a

+ +t" 6o , V+ )

20
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(B'Uz 11 dx+ 6 ý + 6 ax + dv.

In view of Eq. 41, Eq. 52 may be written

6p 2 2$ [(TX COSaj + TX COSfi + TX COS'Y )6V

+ Crx Cosa I+ a ycosp + T zcs1)6y

+ (Tr xzCosa I + T y cospi1 + a z Cosy 1 )6V zda

2~R VOV

+ L2 -4a+)++ v

+ [ 2 -- Z+ a((v,++v )]8 V } dv.

But the coefficients of dvx, 6V u, and 6vz in the surface
integral are the components of urf ace stress; and in the
volume inte~ra1 we note that since the fluid is incompres-
sible

Ov X By O

a z
whence

Iy ax

Ay Ov 82V

a z
Tzk))x /y 8z3 2

21I
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It follows that Eq. 53 may be written

6P- 2 S.6VRda 2,u S x + v + v v
.a 8y 8 z2 x

v_.. V 8v (56)

2 2 a
ax) ByZ

+ ++ DI --V-v >dv+2 aX2 ey 2 z 8 / zj

where S is the surface stress vector. Equation 56 may be
written

6P = 2 $ S. 6 VRda - 2 Su (VVR).6VRdV. (57)

But 6 VR vanishes at the channel walls, and the tangential
component of S vanishes on the free surface, which causes
S. 6 VR to vanish there also. It follows that the integrand
of the surface integral vanishes over the entire mercury
surface; hence this integral vanishes, and Eq. 57 reduces to

6P=- 2u Sv ( 9 VR)'6VRdv. (58)

The condition for dynamic equilibrium in the liquid is

PVRVVR = -Vp - pV4 - 2p Px VR + AV 2 VR (59)

where p is the density of mercury, and p is the pressure.
Here the left-hand side is the mass times acceleration per
unit volume, and the terms on the right-hand side are the
force contributions per unit volume due to the fluid pres-
sure, the centrifugal force field (Eq. 7), the Coriolis force
field (Eq. 8), and the viscous frictional force, respectively.
Multiplying Eq. 59 by 6 VR and integrating throughout the
volume of the mercury we obtain

$ (V2VR).6VRdv $ (PVRVVR + Vp + PV4b
V v (60)

+ 2 p PxVR).6VRdv.
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In order to evaluate this integral let us conoidur the volume
to be broken up into elementary tubes of flow, rorresponding
to which we let the element of volume dv be

dv = dads (61)

where ds is the length and da is the cross-section of an
elementary tube, as shown in the followinq figure. Also let
the volume of mercury which flows acros5 any cross-section

Is

dd portion of
closed tube
of flow

of the tube per unit timrn in the direction of the unit tan-
gential vector ls, in tte flow 6VR be d6q; then

V =dq 1 (62)

R d' r,

Multiplying by Eq. 61 now gives

6VRdv = s dsd6q, (63)

whence Eq. 60 becomes

v SS (Vv) .V~d = d6q [P1s (VR'R
V all line of

tubes flow (64)

+ ls*VP + Pls.V$ + 2ps.p x VR]ds.

But the triple product ls'# x VR vanishes since is and VR
have the same direction; also

4' 1*Vpds .4 ds ~'dp -0, (65)
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Pls*'Vds ds ds = p db = 0. (66)

Substituting in Eq. 64 and noting Eq. 58, we obtain

6P =-2 Y d6q j ls'(VR'VVR)ds. (67)

all line of
tubes flow

But
II *~ =dVR

VVR = IV •lS- VR d d-s

I iv 1(68)
VR'VVR = IVRI (d I sVR 1 + R 1

R R V dI s s -7 N

where R is the radius of curvature of the line of flow, and
1N is a unit principal normal vector pointing toward the
center of curvature of this line. Substituting in Eq. 67
now gives

6P 2 d6q PIVRI ds ds

all line of
tubes flow

= P d~q ln d(IVR 2 ),' 6P = 0. (69)

all line of
tubes flow

The actual value of P is therefore stationary when the veloci-
ty field is given the variation 6VR.

In order to show that this value of P is actually a
minimum we consider the second-order term which was not
included in Eq. 46, namely

"u V L • av / 86V 2) I+ 4V 2

v f2[ - + -ZAaxy
86,Vx avy, 2 6v y o86V a (70)

+ -0-v+ +xy (- +- -
ýYx x ) Fz By(6v 8 6 V x

B- x + jJd.
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This term is evidently positive, and is the viscous fric-
tional power loss which would be obtained with the velocity
distribution 6 V1R alone. Since the first-order terms vanish,
as indicated by Eq. 69, the increase in P due to 6VR is
given by the positive quantity (Eq. 70). Since this vanishes
if and only if 6VR - 0, we see that P takes its smallest
value when 6VR 0, and hence can only be increased by devi-
ating from the actual velocity distribution VR in the manner
described.

As an application of this principle of least power loss
we see immediately that in -the case of the eccentric annular
shape the relative, or apparent, velocity of the mercury
will in some places be greater than, and in other places
smaller than that of the channel. It follows that an ob-
server riding with the main body would see the mercury going
in the d:rection of motion of the channel in some places,
and in the opposite direction in others. This is the situa-
tion which pertains in a wave motion.

As another application we see that since P is a minimum
for the actual distribution of VR it is not sharply dependent
upon this distribution. It follows that if an approximate
distribution of VR is obtained by some approximation proce-
dure, the accuracy obtained for P is much greater than that
obtained for VR. This is important, for the quantity in
which we are really interested is P, since, as we saw in
Eq. 40, it is P which determines the rate of damping of the
wobble. Finally we note that the approximate value of P
obtained is slightly too large, Fince it would be reduced if
the actual distribution of VR instead of the approximate one
were used in computing it.

IMPROVED TREATMENT OF THE ACTION OF THE DAMPER
ON THE MAIN SPINNING BODY

The effectsof the forces exerted by the mercury on the
channel, and hence on the main spinning body, were previously
considered (pp.13-14) with regard to their effect in modify-
ing the motion of this body. The treatment was, of course,
approximate; nevertheless it was adequate to show how the
damper reduces the precession, or wobble, how it reduces the
precessional angular velocity, and how it alters the preces-
sion axis. It is opet, to tne objection, however, that the
forces exerted by the mercury were computed using the motion
which the body had prier to being acted upon by these forces.
Although this situation suggq sts a method of successive
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corrections wherein we first recompute the forces using W
instead of W(see figure on page 14), and the new value of1
precessional angular velocity; and then compute secoiid cor-
rections to the motion of the main body--and so on; nevez-
theless we shall avoid this by taking immediate account of
the fact that with the damper acting the angular momentum
vector H of the main spinning body does not lie along the
precession axis.

Noting the figure below and the figure on the bottom of
page 2 we see that for W = • small the H vector is, closely,

Av

W H S

composed of a component of magnitude AP lying along the spin

axis, and a component of magnitude " at right angles to
this axis (figure below). Denoting the point where the line

spin axis

H AP

center of gravity
of main body

L

extending from the center of gravity of the main body along
the H vector penetrates the plane of the damper by H, which
should cause no ambiguity, we see that

26
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Q BE

is L _ (71)

Since the velocity of the tip of the Ti vector is the " -- ''ue
due to the e.xternal forces, in this ca3e those exerted by
the mercury, it follows, noting the figure on page 13, the
f act that

WH (1(72)

and the fact that Tx and r must be multiplied by 2 in order
to include the effect of tKe other damper, that

2 I1 TI= ( - =l (0), (73)

In connection with Eq. 73 we note that although W is not
stationary, it is, nevertheless, the instantaneous center of
S in its motion. The velocity component of S in the direc-
tion W9 is therefore zero; hence the component of the velocity
of point H in this direction is the same as the component of
the velocity of point H relative to S in this direction.
Equation 73 therefore follows from Eq. 71.

If we let A denote the decrease in precessional angular
velocity due to the dampers, thus

= Av - P, (75)

then Eq. 74 becomes

2 Ir j LAB(6

Substituting Eqs. 30 and 34 in Eqs. 73, 74, and 76, we
obtain, respectively,

(t Q) Ba)P Y (7

f(Av-BO) 214L /ixo, (78)
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42

ýIXB 2MLiOx 0 . (79)

Further eonsideratior of these equations must await the
determination of x 0 and y0.

ECCENTRIC ANNULAR CONFIGURATION--NATURE OF THE
FREE SURFACE OF THE MERCURY. SPECIFICATION

OF THE SHAPE OF THE VELOCITY FIELD

We saw earlier that o given mercLry damper may operate
in several configurations (pp. 2-7) depeiding upon the size
of the wobble. quantity of me-'cury, md dimensions of the
channel; also we saw that one mercury damper may not exper-
ience the same sequence of configurat'ons as i .other. How-
ever, in all cases the final conficura icn i, the same for
all mercury dampers, namely, eccentric anitular. The deter-
mination of the nature of the final damping of the wobble
hence in all casps requires the analysis of the eccentric
annular configuraticn. We must, in parti.cular, determine
the viscouF frictional loss P, ,nce we saw from Eq. 40 that
it is this quantity which is of primary importance in damping
out the wobble. In determirnirg P we shall apply the minimum
principle derived previo'i31y pp ,7-25) to determine the
velocity distribution; however, in order to do this we must
f~rst specify the shape of th, velecity field.

We saw on page 5 that if there were no wall friction the
ini,.r free mercury s'irfare would be a circular cylinder
centered at W as shown in the figure on page 5. With wall
friction, however, this inner surface is no longer exactly
a circular cylinder, and is no longer centered on W, but is
displaced as i.idicated in the figure on page 15. Since for
cur purpose the circular shape offers no particular advan-
tage, this deviation from it is no cause for co:zcern.

Using polar coordinates r and a let us consider the
function

r - a + b cosO + c sin# (80)

where b and c are sit-Jll compared with a, as shown in the
1igu:'e on thhe following page. Equation 80 may'be written

r ar + bx + cy; (81)
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center of

whence

r- 2ar + a = - ar + a 2 bx + cy,

(r-a)a = - ar + a2 + bx + cv. (82)

Retaining only first-order terms in b and c we see from
Eq. 90 that (r-a)' is of second order in these quantitie:;
hence the left-hand side of Eq. 82 may be replaced by zero,
giving

r - a +k x +. ye (83)a (83

Squaring and omitting terms of order highcr than first ordeL
in b and c, we obtain

x + y . as + 2bx + 2cy;

or, again good through first-order terms,

(x-b)' + (y-c) = a . (84)

We thus see that 0o through first-order ters inn b and c
the polar cu-ve (£q. 80) is a circle of radius a who9S center
is at 2oin.,t x b. Y c. To tOhis accuracy -0 y

29
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used in place of the equation for a circle, and for our
purpose is much more conveniient.

For the present we shall confine our attention to the
,ase where the e(,centricity (distance of center from S) of

the inner mercury surface is small, which corresponds to tne
final phase in the operation of any mercury damper. It is
evident that any particle of mercury which is in contact
with the channel wall moves in a circle of zero eccentricity,
since it must have the same velocity as that point on the
wall with which it is in contact. Supposing as an approxi-
mation that all of the particles of mercury move in circular
paths it follows that the eccentricities of these paths in-
crease from zero as we move away from the channel walls and
into the mercury. In particular we see that the central
part of the free surface of the mercury bulges outward so as
to Tncrease the depth of the mercury where it is deepest
(radially), and shrinks inrward so as to decrease this depth
where it is most shallow. The free surface is hence by no
means cylindrical. Keeping these facts in mind and noting
Eq. 80 we shall, as an approximation, choose the function

r- -( - A 1 cosG (85)

to specify the shape of the velocity field. Here cvlindrical
coordinates are used, the origin being at S, the center of
the channel (as shown in figure on the following page); also

r 2 outer radius of channel,

z half the axial (vertical) width of the
chann• ,

a = radius of inner free surface with no (86)

wobblih,
b = worst eccentricity,

X = parameter.

For any values of A, b, and z Eq. 85 gives, accurate through
first-order terms in b, a horizontal circle. As the para-
meter A varies from zero to one with b and z fixed a family
of circles is obtained, the first being on the outer channel
wall, and the last lying cn the free surface. When z =
or X = 0, corresponding to channel walls, the eccentricity oof
these circles is zero. When A -1 Eq. 85 becomes the equation
of t:he free surface, shown in the figure on the following page.
The ci.rcle which lies at the center of the free su, rface for
which z-- 0, = s, has the greatest eccentricity, namely b.
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Y¾

stream
line

rr /2

S

S x

The total volume of mercury is

Volume of = Z f' o7 ('r2 ra., iGdr
"mercury Jab - coseIz o -b ,-a z !-) 1- cs

1 ~ ~ I{r-a +t2ab[ z ( C-'1cse
U Z

- b i - \•2 cos dzd(

-Z
- r -a) .0 -L + d

i! , ,z
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Volume of- [r- 2 4 ba
mercury r, ---- (88)

Accurate through first-order terms in b we thus have
Volume of 9 2rz (r a

mercury (-). (89)

From Eq. 89 we see that accurate through Eirst-order terms
in b the radius a of the circles which compose the free sur-
face of the mercury is the same as that of the inner free
cylindrical surface of the mercury when there is no wobble.

Referring to the figure on the prevIous page we see that
the y and z coordinates of the center of -ravity of the mer-
cury are both zero due to symmetry. The x coordinate ' times
the mercury volume is

""ecr 9-1 v cosO dzdOdr
xtimerur Sr.b= \.

volume -- bL . Cosa

"r 21,,1 -a -1-3 DI i- Cosa

S3 212 2!
3ab - ccs 9\.zv/ J

+ bS [1~ (zYY ccis c(90)
+ -b- Cos or cos-,d

f- + -, b
= I L -+ 8

+* / 3,I -) I -6

- 2,bz [: (" 1 1) b. -" /
3. 4 \ 3 5 17)]

x ti mes ;I S (91).
mercory - 2rb ba 9
volume \! 3 "9

Dividing by the mercury vcluue (Eq. d~8) we now obtain
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- 2b(35a 2 +6b) (9 2)X 1 2 * 2'
7[].5(r 2-a )-4b (

7

Accurate through first-order ternmi in b we thus have
~l

3(1r -a )2aa

The radius of curvature of the curve

r =- f(O) (94)

in polar coordinates is

3

R ( (95)
r +2r' -rr 1

where a prime indicates differentiation with respect to G.
Applying this to the function

r = a0 + b0 cose (96)

where a and b0 are constants we obtain

3

(a0 4- 2aobo cosO + bo cos a + bo sin 9)

a +2acb -os+b a-cos a+2bosin a S+a b oO+bso'O a
3

(a a -4 2a b° cose)•

R -0- G 0  (97)
aa + 3aob coso + 2b a

Applying the binomial theorem now gives

R- [( ) + (a). (b"+2&b Coss)
0 2 o * 0 0

1

+ Ia (b+2&bcos) + ... j
22 0 2 000
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2 -1 2 -2 2x [(a,)- + (-1) (a0) (3ao b0 cosB+2b0 )
2 -3 122

+ (-l)(-2)(a0 )- -1 (3a bocos6+2bo) + ) .. ]

R = a0 + b 0 _ 3a2 cosO - a0 31 3a0 cos0

a0  a 0

+ bo a0 ( -4 + (-1)(-2) 1 I 9a° cos 0
ao ao (98)

+3 a2a cos0 - 3a0 cos9
S4 a0

2

R a0  +- [°- 2 + •+(9-9+- cos :0 +
boao

R = a + 4 (3cosco0-1) + 0..

2a0

Accurate through first-order terms in bo we thus have

RR a ao. (99)

Comparin~g Eqs. 85 and 96 we can apply this result to Eq.850 and thereby obtain

R a r+ - X(r 2 -a) (100)

accurate through first-order terms in b.

ECCENTRIC ANNULAR CONFIGURATION--MAGNITUDE
OF THE VELOCITY FIELD

Ccrresponding to dAdz we obtain a tube of flow whose
cross section is an elementary parallelogram. In this tube
the rangesof values of A and z are infinitesimal; however,
0 varies from zero to 2r, and the shape of the parallelogram
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tube

tube

varies with 9, as shown in the above figure. S'nce the shape
of the velocity field is completely specified by Eq. 85; the
volume of mercury which flow3 in any tube dAdz per second can
be specified by the velocity function q(A,z), th-s

Volume per second q(Xz)d~dz. (101)
in tube dAdz

Since this volume per second is the same in all parts of the
tube, the velocity at any point can be obtained by dividing
Eq. 101 by the tube cross section. Accordingly we shall now
determine this cross section.

The altitude of the elementary parallelogram which com-

poses this cross section is dz. Writing Eq. 85 in tie form

r - f(e,A,s) (102)

we see, looking down from the top, that the base of the
parallelogram is the distance between the curves (Eq. 102)
corresponding to A~z and A + dA, s, respectively. This
distance depends upon 0, and is measured along an orthogonal
trajectory of the curves, as indicated in the schematic
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/ \ x)z curve
curve

-dr rdO

y do

ds

r 

n

9 /
S x

diagram, above. The values of dr and do corresponding to
this distance are given by the relations

Or Or~dr dr + CIA, (103)
8r d 8r~
1 dr r

r o I~ (104)

in which r is given by Eq. 102. Here Eq. 103 is 3brained by
differentiating Eq. 102, and Eq. 104 is the condition for
orthogonality. These equations may be written

Or Or
dr - 0d" dA,

dr + r dO -0,

which constitute a set of two linear, algebraic equations in
dr and do. Solving, we obtain
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2 DrZ r

dr = 2 +

6,37r, )

Sr Br (106)

dO~ a IL d
dG r2 + Vid

It follows that ds n the base of the parallelogram, is given
by

2s rIJar Lds = /(dr) 2+(rd)= = Bd.

r•

ds 8X_____ dA, (107)

/IFTI, 7 \ a')

Olr

since we see from Eq. 85 that A is negative.

Dividing Eq. 101 by dsndz," the cross section of the tube,
using Eq. 107, we obtain f or the velocity of the mercury in
the tube

V 1 (108)

Here r is given by Eq. 85, and q(%,z) will later be deter-
mined so as to minimize the viscous frictional power loss P.

Expanding the radical in Eq. 108 by the binomial theorem
g ive s

V5 ~ ~ r r [ y i 8 r~j) .j (109)

Substituting from Eq. 85 an~d retaining only terms through
first order in b we olbtain finally
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;;V Z)

+ ( X xb~l &) sino ~
xL 2i 2 22 cs

X + ~ r -A( r ,- a )- x 2 b l " z c s

2 2

CALCULATION OF THE VISCOUS FRICTIONAL POWER LOSS P
FOR GIVEN b AND q(X.,z)

Referring tc Eq. 43 we see that in order to obtain the
viscous frictional power loss per unit volume we must deter-
mine the partial derivatives of each of the velocity compo-
nents Vx, Vs,, and Vz with respect to x. y, and z, respectively.
We may, however, place the coordinate axes in any way we choose.
Let us place these with the origin at the point at which we
wish to determine the loss per unit volume., the z axis vertical,
and the x axis tangent t-- the line of flow, the positive
direction being that of the flow. The positive y axis then
extends outward norm~al to the line of flow, as shown below.

yl

X

0 line of flow
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With this orientation of axes Vz 0; hence

8V 8V -ý V

8 - YOz

Furthermore, since the fluid is incompressible

8V 8v 8V
Z -- = 0; (112)

hence since the last term vanishes due to Eq. Ill it follows
that

ay ax

It thus remains for us to compute

v V V BVy 5Vy

ax' ay' -z' x-' TT-"
We shall now consider these separately.

8V
Determination of SX. Let s be the distance measured

from the origin along a line of flow, and let a denote the
angle which any arbitrary line of fliw makes with the posi-
tive x direction, as shown in the figure below. Noting that
V5 is a function of position we see that since

V =V-cosa (114)

XX

Y lines of flow
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it follows that
eD OV SV
-- Cosa- V sina
ex ex S h Ox(15

At the origin, which is the only point :in which we are
interested, a - 0; and Eq. 115 becomes

DV D" (116)
ODx Ox'

Since this is merely the directional derivative of Vs in the
x direction, which at the origin is the direction of increas-
ing s, it follows that

OV DV

OV
Determination of - . Referring to the figure on page 39

we now have

V y - Vs sina, (118)

OVs a.
sina - V Cosa (119)

ex ex S ex, 19

At the origin a = 0, and this becomes

Ba

But ea is the directional derivat!ve of a in the x direction,

which at the origin coincides with the direction of increas-
ing s; hence at the origin

Da &a
w- -v- - curvature of 1ie of flow. (121)

Erquation 120 thus becomes finally
D Vs

n a - -[ (122)
ex -

where R is the radius of curvature of the line of flow.
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Dx Differentiating Eq. 114 we obtain

Vx Vs .av = vosa - V5 sina S (123)

ht the origin a-a 0, and this becomeL

aV &V
- - -- (124)
8y O

But this is merely the directional derivative of V in the y
direction, which at the origin coincides with the Airection
normal to the line of flow. Equation 124 thus gives

DV DY
SX _..- - ( 1 2 5 )By as n

where sn indicates the direction of the outward normal to the
line of flow.

OV
xDeterimination of --. Differentiating Eq. 114 we obtain

DV OV M
-FzI--- oa-V.sina (126)

At the origin, where a - 0, this becomes

8V- - a 5  (127)

It should be noted that the direction of the positive z axis
here is the same as that of the r axis in Eq. 85. In apply-
ing Eq. 127 we may therefore use the & coordinate of Eq. 85.

avy
Determination of -K-. Differentiating Eq. 118 we obtain

eVy DVs oile-j-j y 5 3 sin - V1 cos& (1ZS)

At the origin a- 0, and this becomes
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8Vy 8a
y V s 8z'"19

With Ea. 129, as with Eq. 127, we may use the z coordinate
of Eq. 85.

av y
Determination of -- y. Substituting Eq. 117 in Eq. 113

we obtain immediately

8y (130)
Vy as

If, however, we differentiate Eq. 118 we obtain

-- - --V- sina v co- VBa (131)

At the origin a 0, and the y direction is that of the out-
ward normal, hence Eq. 131 becomes

IVY = aa (132)
8y " as 8n

That Eq. 132, which we have just obtained by differentiation,
is compatib' ,ith Eq. 130, which was obtained as a conse-
quncr of the incompressibility of the fluid, can be seen by
examining an elementary length of a tube of flow (see figure
below). Fluid enters the left face, of area dsndz, with a
velocity Vs, and leaves the right face, of area

(ds n - ds ds)dz,
n

._. ds
as n he-- n - -- ds ds

tube of flow

2ds

4.2
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with a velocity (Vs+dVs). Since fluid leaves the elementary
vol•,,me at the same rate at which it enters, it follows that

V ds dz = (Vs+dV )(1 - -C' ds ds dzVsSn S d I s n nd

0 = dV - V 5 dc ds, (133)

n

wherein the higher order term has been omitted. Equation 133
may be written

Ov8 _= V a_.a 
(134)3 s s -j 3n '

which equation expresses the identity of Eqs. 130 and 132.
Equation 130 is easier to apply than Eq. 132, since its

av
negative is already available as Ox

Substituting Eqs. 117, 122, 125, 127, 129, and 130 in
Eq. 43, we obtain

unitr lossOV\2/VS V8 2 8
per unit = MI4(-8S) + - + - + (135)
volume n

We shall now substitute Eq. 110 in this expression, and
thereby determine the power loss per unit volume good through
first-order terms in b.

Along a line of flow A and z are constant; hence
8Vs

aVs OV 
(136)as 88 8$"

But, noting Eq. 110,

-- (,-a) 1-sinO; (137)

(ra- a) [ s

also, noting Eq. 85 and applying the binomial theorem,
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as Br2- r

= {r - X(r -a) - Aab [1 ( ) i} (138)

rs r2 -A(r: -a) r , -A(r 2-- a) L o\sZ+J

Equations 137 and 138 in Eq. 136 now give[2
S-s 2q(X,z)Xb[ - (-jIsinO

(ra-a)2 [r.- (r -a)]

8 V
Next let us determine : -6s-- We have for fixed z

n

ay av
dV , d- + S dO. (140)

In the normal direction dO is given in terms of dA by Eq. 106.
Substituting in Eq. 1L40 and dividing by -ds ,4 given by Eq.
107, we obt:ain n

evs Or Dr
s 80 30 8al

-v - r2 4. (Rta
s n8Or

n ax

i r TO-

4 Here the minus sign is due to the fact that is the

directional derivative of V in the outward direction normal
to d stream line.
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vv 
2 Or (141)

a V / - -- - ,/-r a O 8 0
as arar+~ •O

18r 2 ~ r__ __OS - r\ra9

Substituting Eqs. 85 and 110 in Eq. 141 we obtain

aq z) ~ - 2Ab F1 Z 2 -Cos
DVs ak r 2 -a L 1  0j

-n (r -a) {-a+2Ab 1 - (.--) 2 ]cos

2q(Xz) b - ( cos

+
+(r, -&)2 {r 2 -a+2kb[l- (.A-) ]c•se}

aD a(A Z)r'Vs ax ( 4Xb z }2! - -- , -;= \- Cos
n ( r 2- a) {r b a -a(142)

+ 2q(X). b (z cosF.(r+ a)-3 z/ J

Continuing we next use Eqs. 100 and 110 to obtain

v q(x.-) 2Ab11- L1 sl)cosek. (143)R (r 2 r -a 7 rr a'. ('

Next we obtain from Eq. 110
av q(X,z.1 2
s a fz 2AbCo

DV.- rg.~)-a [1 1 (4-']oDz r-a jj 5 -aa I. (144)

+ 4q(X~z)Lbz cost.
z 3 (r,-af

Oa
Lastly we shall determine ý-. Noting the figure on the

following page we see that N
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dr
y: (r,e,z) or (X,O,z)

line of flow

circle with center
at S

S ×

a tan (145)
2 r Or Or

aa =r - 80 8z (146)

rl~

Noting Eq. 85 we see that the first and second terms in the
numerator are of first and second order in b, respectively;
and that the first and second terms in the denominator are of
zeroth and secco'nd order in b, respectively. It follows that

-_ m 1 a r (147)67 - r Bz8O'

or, substituting prom Eq. 85,

_v. a . 2bX2 z sinG. (148)
Ti z 1 [r-A,(r -a)]

This with Eq. 110 now gives finally

S23(z)bX 2z sinG (149)
Sz(r -a) [r-, A(r -a)]

46

.--- t =--- - . .-- .-- ----- ra --- ___________ - r



NAVWEPS REPORT 8611

We have now determined all of the quantities which appear in
Eq. 135, the power loss per unit volume.

In order to obtain the total power loss P we must inte-
grate Eq. 135 throughout the volume of the mercury. Using
the x, y, z axes of the figure on page 31 we have

x = r cos9, y = r sinG, z = z (150)

whei-e r is given by Eq. 85. The Jacobian of x, y, z with
respect to A, 0, z is

! ocos cosr - r sin8 Or cos6

a(x,',z) Or ( ]z (151)
B(AG•z) = X sinI sinG + r cosO z sin(

0 0 1

Developing by minors with respect to the elements of the
last row, we obtain

(x~yz) =O cosG \• cosG - r sin)

(,Oz) sin sin 4 r cos

Or
8(__ _z) X Or (152)O(A,O,z) "

The element of volume in the curvilinear coordinates A, 0, z
is therefore I I~~~)O

dv XO(AYz) dkdodz = - r dkd~dz (153)dv = (A')0jz)1

since ý-• is negative, as is evident from Eq. 85. Equation 85

in Eq. 153 now gives finally

dv = {(r 2 -a) [r,-A(r 2 -a) ]

+ Ab[2r a-3A(r -a)] 11 - (Z' cose (154)

S2A63b 2[l I ()Cos 20} dAdodz.

47



NAVWEPS REPORT 8611

Now that we have obtained all of the quantities which
appear in Eq. 135, and also the element of volume, we are in
a position to write down the expression for the total power
loss P. Substituting Eqs. 139, 142, 143, 144, and 149 in
Eq. 135, noting Eq. 154, and integrating throughout the
volume of the mercury, we obtain

z 4 zl b 1q - z-) 21sino] 2

( + a [a 2l / ra)

+ 2qb 3 - cose (155)
(ra- a) 

-

"" (-)[r -(r -a)] r r- a (i - ' co2q

+ 4 1 )]cos~} + 4__bzcosr',_i r2 -aL zz 2(r )*

+ 2 2qbAxz sinG 1i {(r, -a) [-A(r.-a)]
z I(r 2 -a)[r 2-A(r 2-a)]

+ Ab[2r -3X (r -a)] I - cos dxdzdo.

Here q = q(A,z). If we knew q and b. Eq. 155 would give P
closely; however, q is an unknown function which we shall now
determine. In so doing Eq. 155 will be reduced, and the low-
est orders of terms in b sorted out. Further reduction at
this point, however, would be premature.
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DETERNINATION OF q(A,z)

Since q(X,z) depends upon b, let us expand this function
in a Maclaurin series, thus

q(A,z) = q 0 (A,z) + bq 1 (A,z) + b2 q2 (X,z) + .... (156)

The problem of determining q(A,z) then becomes that of obtain-
ing q0 (A,z), q,(X,z), q 2 (A,z),...I which functions are inde-
pendent of b. This we can do by minimizing the viscous
frictional power loss P, given by Eq. 155, under the condi-
tions that the mercury velocity be that of the channel walls
wherever it is in contact with these walls, and that b be
fixed at some arbitrary small value.

First, let us place b = 0, then Eqs. 156, 110, n-id 155
become, respectively,

q(X,z) - q0 (X,z), (157)

q0 (A,z)
Vs= r-a' (158)

Z' aq 0

P0  0 o ' (r 2-a) 2  (r2 )r3 r2-)

aq 1 -2 U 0.9)

+ 8a (r -a)[r"z4X(r2 a)I'dadzda.

When b = 0 the mercury takes the shape of an annular ring,
and rotates with the main spinning body as if it were a
rigid, integral part of it, the apparent angular velocity
being (P-v) clockwise. Noting Eq. 85 with b 0 0, it follows
that

Vs = (s-') [r -A(r,-a)]. (160)

Substituting in Eq. 158 we now obtain

q 0 (A,z) = (P-P) (r 2 -a) [r,-A(r,-a)]. (161)
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Substituting Eq. 161 in Eq. 159 we find that both brackets

in the integrand of Eq. 159 vanish, and

PO = 0, (162)

which we should expect, with the mercury rotating like a
rigid body. It may be mentioned that Eq. 161 can also be
obtained directly by minimizing Eq. 159 subject to the above-
mentioned surface conditions, no use then being made of Eqs.
158 and ).60.

Next, let us substitute Eq. 156 into Eq. 155, which can
be visualized without rewriting Eq. 155; then the resulting
expression fur P becomes a power series in b, thus

P = P + Pb - P b2 + .... (163)
0 a'

Referring to the subscript on F: or qi as the order of tl:at
Pi oi qi, 4e see that the higher the order of P4, the higher
will be the 3rder of the highest order q which it contains.
In order to determine successively q 1 (xz), q2 (xz), ... we
make use of the following two facts.

1. q(X,z), and hence q%(A,z), q,(X,z), ... are such that
P is a mizimum, subject to the above-mentioned surface condi-
tion, regardless of the particular value chosen for b.

2. If b is taken to be bufficiently small, the sum of
all the terms ueyond the nth in Eq. 163 is negligible in
comparison with the sum of the first n terms of this series,
providing oniy that these n terms contain at least one non-
vanishing term,.

We have already seen how q (X,z) can be obtained by using
but one term (n=l) of Eq. 163 in connection with the minimum
principle.

In order to determine ql(A,z) let us place n=2; however,
since P0 contains only qo(A,z), which has already been deter-
mined, and since P0 = 0, due to Eq. 162, we shall in effect
try to determine q,(Az) by minimizing P,, in which q 0 (A,z)
has been replaced by its known expression (Eq. 161).

Substituting Eq. 156 in Eq. 155 each large bracket in the
integrand becomes a power series in b. These series, however,
begin with terms which are linear in b, for those terms with-
out b, which are also those which appear in the brackets in
Eq. 159, all vanish, as we have seen. Noting the squares on
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the large brackets in the integrand of Eq. 155, it is now
evident that the smallest power of b which can appear in the
expansion of P is two; hence

P1 = 0. (164)

in view of this we place n=3, and try to determine q (Arz)
by minimizing P2.

Since the coefficient of b 2 in the series obtained by
squaring a power series in b which begins with the linear
term is merely the square of the coefficient of b in that
linear term, we can write inuitediately

P2 ,~o ~ f4 [I' _. "in-

P 2 a)2 r2 -r

4 8qX

41 r ax_.l -cose

(r2 -a) 3 \ZJ

I 2q

+ 73- [ 1 -Z ()]cose
(r -a) (r -a) 3

(165)

2q AfJ [- cs

+ 2 - r )-a I-)
(ra -a) [r -.X(r -a)] -

(r-a' -co1

+ r - z ~[1 1 \ZJCOSO + 8Z + 0-a . . . r -a '("r

S I (r-)J-a) ]1

Noting that
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-b (A+BcosO) 2d8 = 7(2A2+B2) (166)

we square the brackets in Eq. 165 and carry out the integra-
tion on 0; then substituting Eq. 161 for q0 we obtain

2 S.•(•.vz 106A1, 1 z1 .]

z I (r 2 -a)a

(z2]

+ 4 [r -2A(r 2 -a) ]2 4
(r2 -a)

22 ]2 (167)

+ 4 z [r+'-(r 2 'a) 4•4 Z (r2 -a)fr -A(r -a)]dXdz

a-a)

2 ~1A:~ [ 2 + (-r, -a) [r X(ra a) ]

zl (r.-a- a) 2

+ _ -z;(r-a)[rXa(r ( a)-dAdz.

Here the first integral does not contain q,, and hence plays
no role in the minimization process. The integrand in the
second integral contains two squared brackets, dnd is hence
positive. This integral therefore takes its minimum value,
zero, when

q 1 (A,z) = 0, (168)

which is consistant with the required boundary conditions,
and is hence the desired function.

At first sight it may seem strange that P, - 0 and
0 1( z) -- 0; however, noting Eqs. 85, 110, and the figure on
page 31, we see that if b "is replaced by (..b), the effect is
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merely to rotate the flow pattern as a whole through 180 deg,
which does not alter P or q(A,z). P and q(A,z) must there-
fore be even functions of b; hence

P. = 0 if i is odd,1 (169)

qi(A,z) = 0 if i is odd.

We note that Eqs. 164 and 168 are in accord with this result.

Finally we note that since q 0 (A,z) provides the Cesired
mercury velocity at the chainel walls, it follows that all
higher orC'er q's must vwni.L at t1- channel walls, thus

qi(Az) = 0 when i > 0. and A = 0 or z = I zI. (170)

DETERMINATION OF THE VISCOUS FRICTIONAL POWER LOSS P

Returning to Eq. 167 we see tl.at since the second integral
vanishes due to Eq. 168, P2 is given by the first alone.
Carryinq cu-- the integration on z, we obtain

a I6Aa 16z + 4[ra-2A(r.-a)] a16z,P w r(/3-v) i 1 6z' 4P25r a3 + .4
15(r 3- a) 15(r,-a)(

16A 2z fr -A(r -a)) 4A 42z+ 12 (r-+*.. 34 (r,-a) [r| -A (rt -a) ]dA

+2. 2 r + (a raatr -a

3z 2(r a)

8 3(-) 2A 3 rZz

8z3a

+ I [r'

SA (4r a (r -a) + 4r ( -a) ) + (r-a)

+ 20 ar)A' + 3A4 ,& (r -a)a

- A1 (r,-a) ] + r [A'rX-A (r -a)} dA
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= 8 15 lrt- [(r -a) r[ - T (r2-a)

8z 1 8 5
+( az( r - r (-a) + r (r -a)- (r-a)]

(r 2-a) 3 -
-2

+ 20 F1r - 3~ a(r -a) + -1 (r -a) 2
z 1 (r a) r3  2 4 2 2 5 2 2-

1 3]+5 - )[

"6 (r-a + a [ 5 - -2 (r 2 a)}z1

38 32z r 20zr 2  8z r3

15 A( -v) 16z (r-a) 2 2 12
(r 2 -a) 2 (r 2 -a)3

25 (r -a) _5' 3 2-a)0 r 2
4 2 r 20 2

I 6 -_ z 2I 3 5 r-_ay4

P2 - rJf-v T2 Lr 2 -a/\ a r 2 -a / 4](72

+ L_ (4 •a0 " 90 + 78 ( - 25 ) (1

Knowing P2 and the fact that P. = 0, due to Eq. 169, it
fcdlows from Eq. 163 that accurate through the term contain-ing 1) 3

P S P b2 , (173)

.We saw on pages 15 and 16 that this quantity is of primary
importance in elimiinating the wobble.

EXTENSION OF THE MINIMl1I PRINCIPLE FOR THE VISCOUS
FRICTIONAL POWER LOSS

The class of velocity aistributions considered in deriv-
ing the principle of least viscous frictional power loss
(pp. 17-25) consisted of those distributions wlhich at each
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point have the right directior, ind which also satisfy the
actual surface boundary condition at the solid surface, as
described on page 19.

Later' on in applying the minimum prir'iple to determine
the velocity distribution, the shape of the velocity field
was specified by Eq. 85, which was assumed to give a suffi-
ciently good approximation if b is properly chosen. We still
have the problem of determining b.

It has been convenient to picture the mercury flow as
being composed of an indefinitely large number of elementary
tubes of flow, a typical tube comprising the region A to
A + dX in A, and z to z + dz in z. We may, in fact, consider
the fluid to be constrained to move in a network of such
tubes. If in so doing we picture the walls of the tubes as
having the ability to exert constraining pressure normal to
these walls and hence normal to the tubes of flow, we arrive
at a situation wherein the approximate velocity distribution
obtained for any value of b and given by Eqs. 85, 110, and
156 may be considered to be the exact velocity distribution
that is obtained if a suitable constraining body forece a per
unit volume be superimposed. The body force intensity vector
U is everywhere normal to the relative velocity vector VR.
Adopting this point of view we shall henceforth refer to the
approximate velocity distribution corresponding to anv value
of b as the "constrained velocity distribution."

We can easily extend the minimum principle given on pages
17 to 25, so that it is applicable not only to the actual
velocity distribution but also to the constrained vejocity
distribution. In order to do this we need only to add a term
U to the right-hand side of Eq. 59, which leads to an addi-
tional term

Sv 'VR dv (174)
- v

on the right-hand side cf Eq. 60. This term vanishes, how-
ever, since a is normal to 6 VR, which is parallel to VR;
hence Eq. 60 is not altered, and the derivation continues as
before. It follows that the principle of least viscous fric-
tional power loss applies not only to the actual velocity
distribution, but also to the constrained velocity distribu-
tion.

AF a consequence of this extension of the minimum princi-
ple we can dispense with the assumption that the shape of the
velocity field given by Eq. 95 is sufficiently close to that
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of the actual distribution to permit the application of this
minimum principle, since the validity of this principle has
now been established for the constrained velocity distribu-
tion itselr.

PRINCIPLE OF LEAST CONSTRAINT

Since the constraining body force intensity 9 was intro-
duced artificially so that with it the approximate velocity
distribution becomes exact, we see that the exact solution
of the fluid flow problem is characterizeu by the relation

S0 . (175)

This will automatically be realized if

r a dv = 0, (176)
i v

the integration extending throughout the volume of the mer-
cury. If the solution obtained is not exact, the integral in
Eq. 176, whic' we shall call the "constraint," will not vanish.
Nevertheless the problem of obtaining an exact solution in-
cludes that of obtaining zero constraint; and in obtaining
our approximate solution we shall try to achieve this condi-
tion as closely as possible, as indicated by the condition

Constraint = K = ý dv = minimum. (177)

At present we have a family of approximate solutions
characterized by the parameter b and, as we shall see, by an
unknown function of A and z. These will be determined by the
above "principle of least constraint," which is expressed jy
Eq. 177, and by a surface analogue of this Principle which
applies to the surface constraining pressure at the iree
mercury surface. This analogue will, however, be considered
later (see page 64).
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DETERMINATION OF THE PRESSURE FIELD

If the constraining force intensity U be included in
Eq. 59 we obtain as the condition for dynamic equilibrium in
the liquid

PVR.R =W - Vp - pVb - 2ppXVR + ;&V2VR + a. (178)

We shall use this expression to determine 9 for use in Eq.
177; however, in order to do this we must first determine p,
the pressure.

p can be partially determined by solving Eq. 178 for Vp,
multiplying by lds, and integrating along a line of flow
starting at the point for which 0=0, as shown in the figure
below. Proceeding thus, we obtain

ls.Vpds = [- p1s(VR.W) - P1s*V"
0 0' (179)

- 2plsh/-XVR+41lsvVVR + Is'flds.

line of flow

fixed point s-0
at 0-0

variable point of
pressure p

But the triple product ls'FXVR vanishes since I and VR have
the same direction; also ]s.0 vanishes since a Is normal to
the line of flow. Finally, noting Eq. 68 and the fact that
we have denoted IVRI by Vs., we have
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dIVRI 1 d(V2 )

R R•ds 2 ds

In view of the above, Eq. 179 becomes

(b s d(V'
SdP- (* Jh d 1 .9Vb-- ds a + Ali •' ds,0ds Y0  2' ds Pd+sR

PV - - PA +OL $ sd + #( A.,z, (181)

wherein 0 is constant for any line of flow, but may differ
from line to line. We note that a line of flow is specified
by the pair of values (A,z) which correspond to it; hence *
is a function of X and z.

Taking the gradient of Eq. 181 gives

Vp = - PVSVV3 - pV6 + AV $ iso'VRds + VO. (182)

Substituting in Eq. 178 and solving for U we now obtain

p(VR'VVR-VsVVs) 4- 2pI3XVR

)A %7 is.GV4 V~ + Vo. (183)

- VR-V s d

Noting Eq. 68 and the fact that

DV DV DVVV S + OnS s + 1; (184)

also that

1Sn - 1No IVRI - Vs; (185)
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it follows that

VR- - VVI =-+ V 1 v9 - Vs •- iz. (186)

RR s s s s/ N sz z'

Equatic-, 183 thus becomes

V= 8Vs 8)VB = P( + v •;I ?I+•V
R, s0 Ts 817u~n) lN -P -s 3 + 2POXVR

- < VVR - V Y s is.V vRds + V0. (187)

0

Here we have seen that 9 is at each point normal to the line
of flow. The same is true of V#, since # is constant along
each stream line; alsc it is evidently true of the first
three terms on the right-hand side of Eq. 187, including the
Coriolis term. It follows that the one remaining term, which
contains A, is at each point normal to the line of flow.

Another fact to be noted is that since 0 is by definition
such as to make the approrimata flow physically possible,
there is no question about the existence of #; hence the ex-
pression for V# obtained by solving Eq. 18' must be such that
a function having it as a gradient exists. The curl of this
expression must therefore vanish.

Turning to the .eterminatic-i of # we first note that Eq.
187 may be written

S- U (9 ', ,Z ) + V # (A 'Z ) (isP )

where

V2 8Vs PV

s , (189)

"- (VVR " V 5o ls'VRdS)" (19)
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The configuration, the velocity and pressure fields, the
constraining force field, and 0 also depend upon the parame-
ter b, which, in turn, depends upon ý, w'iich is a measure of
the angle between the spin axis and the precessior axis.
Substituting Eqs. 188 and 153 in Eq. 177 we obtain for the
constraint

K = Y01 S., z,,3 (U+V#)3 Jd~dzdO (190)

wherein

= ______ = rf {(r2 a)[r, A(r2 a)]

+ Xb[2r -3)4(r 2-a)] 1-(j)]Cos$ 11

- 2A 3 tba[i - Z1 r.8

due to Eqs. 153 and 154. We now wish to determine # so as to
minimize K.

Proceeding with # and x in a manner similar to that used
with Q and P in the section on pages 49-53, we represent U,
*,and x by their Maclaurin series expansions in b, thus

U(A,z,G) -U 0 (XzIO) + iU I(),z,G) + b aU a(A)ZIO) + 00

CADZ *0 0 (,z) +- b# ()4DZ) + b# a AZ +

kv i 0 bsI + ita +(192)

Substituting in Eq. 190 we obtain

r i 0+bo I+b~g+. a sf ýO s l + v

+ ( 1701)b+ (U 3+70 )b' + *...J'JdAdzd#
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So S1 4- V(Uo V~0 )' + 2(Uo+Vo 0 ) (193)

1

"• (U1+V*,)b + [(U 1+V*d 2 + 2(U 0 +V*O)

"* (U2+V*))]b + ... } Jd)-dzd9.

b is evidently an odd function of t, and vanishes when
t=O, in which ease the spin axis and the precession axis co-
incide. For any value of b, and its corresponding value of
t, 0, and hence #0, #4, #7 ".... are determined so that the
constraint K is minimized.

First let us place b=0, corresponding to which the mer-
cury and the main body rotate together as one rigid body.
Then the second and last terms in Eq. 189 vanish, since Vs
does not vary in the z direction, and viscosity plays no
role. Also, noting Eqs. 85, 142, 160, and 161, we have

Uo = p{ (P-v)' [r.-A(r -a)] + (-,) (Ira -A (r2 -a) ]} N

- 2p9(t?-v) [r 2-;L(r,-a) iN
U = -2pY(P-v)[rA-X(r -a)11N (194)

where IN is a unit vector r•irected toward the axis. Placing
b-O in Eq. 193 we lose all but the first term in the brace;
and this can be made zero by putting

"- VC n UP 00(195)

thus

o t - - 2Ua v(II-v)[r-A(r,-a)]lN, (196)
Sdr

U-" - 2py(#-r)(r -a)f Ar- (r -a))],

# - ps" v($'v) (raA(r-i-i) + Pi'(O-V)a + C (197)
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where c is an integration constant. Here the second term
is added artificially so that

00 = C0  when A = 1, (198)

which will be convenient later.

Next, noting Eqs. 85, 110, 156, 169, and the figure on
page 31, we see that if b is replaced by "-b) the effect is
merely to rotate the flow pattern as a whole through 180 deg.
This does not alter K, which must therefore be an even func-
tion of b. Furthermore if we consider the pressures at
corresponding points of the flow patterns for b and (-b),
respectively, these being points which differ only by 180
deg in 0, the values of A and z being the same for both; we
see that all terms on both sides of Eq. 181 except 0 are the
same at corresponding points (see NOTE, below). It follows
that 0 is the same at correspondin- points. Since these
points have the same values of A and z, but va ues of b which
differ only in sign, it follows that 0 is an e.'en function of
b. Since K and 0 are even, the K's and O's with odd sub-
scripts vanish, and

K bK b4 + bK +K , (199)K = K K4 K6 •. ,

0= 40(X,z) + b3 2 0a(A,z) + b404 (A,z) + ... (200)

Here K0 =O due to Eq. 193 with b=0, and Eq. 195. It is now
evident that good through first.oorder term, in b the pressure
p is given by replacing 0 by Eq. 197 in Eq. 181, thus

pV 2 C ,s .2R

- --2 --- p4 s + A, 1 s
ý0 (201)

- pi (p-) [r 2 -X(r a-a) + pv(O-')a + C0 '.

NOTE. In the tern• I 'os s.15 *VRds in Eq. 181 the inte-
gration exterds from the fixed point for which 0-0 on a line
of flow around clockwise to point s. The 180-deg rotation
of tre flow pattern hence adds half the line of flow to the
path of integration of the above integral in determining its
value for the point which corresponds to s afrer the rota-
tiort. The inteqral will therefore be the same for both s
and this corr-Lponding point -if and only if it is not altered
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by this 180-deg increase in its path of integration. We
shall now show that this condition is satisfied.

Noting that $9 VR is the body force per. unit volume due
to viscous friction and that this is reversed in sign if VR
is reversed in direction, let us consider two elementary
lengths of the tube of flow dAdz, these being of length ds
and located symmetrically about the line 0=0. Since the
flow in one of these is similar to that which would pertain
in the other if its direction were reversed we see that
pjs.V2 VRds is the same for both of these elements (see figure
below). It follows that the value of Afls.V2 VRds taken over

tube of
flow

symmetrical
elements

the first quadrant 0 6 • w./2 is the same as its value taken
over the fourth quadrant 3r/2 0 S • 2r and t..at ýts value
taken over the second quadrant is the same as .its valu' taker.
over the third quadrant.

Turning to Eq. 181 we now s,;.e th at if we move cnce ar nund
the tube of flow p, Vs, dnd + ret.,rn to their initial values,
while 4 is constant. It follows triat the .ntegral must re-
turn to its initial value; hence the val'3e of p) 0S.VIVRds
taken over all four quadrant'S is zero. The above results -ay
be written

5, 5.+ 5+ S4
""5
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where the numbers indicate the quadrznts over which the inte-
grations are taken. Replacing A by f 4 an4 r. by f 3 in the
last e, tion we obtain finally

Y3 + Y1 0
Applying this result to the term A f 0 s ls' 9 VRds in Eq.

181 we see that since the initial point of the path of inte-
gration is taken as that for which 0=0, it follows that in
computing the value of this integral for the point which
corresponds to s after the rotation we may omit the first
180 deg of the path of integration. The integral over the
remainder of the path duplicates that for point s, as desired.

SURFACE ANALOGUE OF THE PRINCIPLE OF LEAST
CONSTRAINT. DETERMINATION CF b AND c

The constraining body force intensity U was introduced
artificially to force the mercury to flow in the pattern
specified by Eq. 85 (p. 56); then the pressure was deter-
mined so as to minimize S in a least-square sense as indi-
cated by Eq. 177, which expresses the principle of least
constraint (pp. 57-64). In a similer manner we shall now
introduce a "constraining pressure" qs which acts on the free
surface of the mercury from without, and together with the
atmospheric pressure Pa and the pressure Pt due to surface
tension balances the pressure in the mercury and also the
normal compressive stress due to viscosity in the mercury at
the free surface, as indicated by the relation

0V
s p - 2M - n Pt - Pa (202)

where n indicates the direction of the outward (into the mer-
cury) normal to the free surface. The remaining parameters,
namely c. and b will now be determined so as to minimize the
conistraining •ressure 0, in a least-square sense over the
free mercury surface af, as indicated by the relation

Surface constraint = 3 da = minimum (203)
a4f 2

64

S . . .. . : _ •_



NAVWEP$ REPORT 862.1

where da is the element of area of the free mercury surface.
This "principle of least surface constraint" is the surface
analogue of the principle of least constraint (Eq. 177),
which was used in the previous section.

Before proceeding with the determination of C. and b it
may be well to consider in retrospect the different varia-
tional processes that we have used. These may be outli:'ed
as follows:

1. For arbitrarfly chosen values of t and b, the shape
of the relative velocity field is specified by Eq. 85, after
which the determination of this field is completed using the
principle of least viscous frictional power loss.

2. The pressure field is next determined except for the
additive constant c0 using the nrinciple of least constraint.

3. Holding ý fixed ,- f.nal!.i determine c0 and b by the
principle of least !.arf6ce constre~nt.

In the previous seccion the valuu of b used in determining
the pressure field was the act'ial value determined by 3
above, althouch a,.t the tLme wcý did not know b explicitly in
terms of •.

APPLICATION 01' THE PRINCIPLE OF L2AST STIRFACE
CONSTRAINT TO THE DETERMINATION OF b AND c

In order to carry out the procedure described in the pre-
vious section we must obtain expressions for the various
terms which compose Us and hence p, which are given by Eqs.
202 and 201, respectively. We shall now consider these terms
in order as follows:

P2
pV5

T'he Term _ 2. This occurs in p, and follows from Eqs.

111U, 156, and 169, thus

pV p[q0 ýAz)] izb
a .. - ___ _ -.ooL9 (204)

2(r -a) " -a L IV

which expression is good through first-order terms in b.
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The Term pD, This appears in p, and is given by Eq. 7,
thus, noting the figure above,

p@ = P 22/3 _ pfl =
p -• = - - r-i-- rs + 2 + 2rs• cos(0-0)]. (205)

Here r is given by Eq. 85 with X=i, thus
s

r a - b 1 (206)

This in Eq. 205 gives, accurate through first-order terms in
b ý

"--pf3 rj 2 z•7,zJ:

+ 2• P - b i -\-7,)Jcosf co~-•

2 01

Sa3 + ts + 2ta cs(O-0)cosLJL- ( ] [- 2a - U~ c - (0. (07)
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Omitting the higher order term which contains 4b this become's

1; 2a + pa 2 fb[1 - \(z"1oso

PP 
(208)

- 4 ces(9.•)} p ___ (08
2 "*

Hlere it is likely that the last term in Eq. 208 is of higher
order and can he omitted; but this can be decided later.

The Term p l VVRds. This occurs in p, and can be0s

conveniently determined using the notation and choice of
axes described in the section on pages 38-48 and shown in
the figures on pages 38 and 39. Proceeding thus we obtain

VR = iVX + jVy + kV, 1is = i at the origin,

V'VR = iV'V X +jV 2 V + kVV , (209)

22 2 V

=OV + V V V
is R = x 2x 2 y 2)'

and mvst now determine the three terms which compose this
Laplacean. The values of these three terms are, however,
required only at the origin.

Differentiating Eq. 114 now gives

8V cosa - V sina ea

a 2V X D2V s V ea V s a
Ox Sx

Vx cosa - s In sina - a s ina e-x (210)D oa x Dx Dx•

-v--q-v sin .

- V cosa( - V s i x

At the origin, which is th,, only ,.int in ý,hich we are
interested, aý0, and Eq. 210 becomes
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a 2 as V \x • (211)
ex 2 x

Similarly, at the origin

2 s V Y_) (212)
2y 2y

8iV 8OV
a 2 a (213)
2 a2 SBz Oz

In Eqs. 211, 212, and 213 Vs is given by Eq. 110; and the
following directional derivatives

aa Ba Ba Da Ba(2 4Ox- -- = -- , BZ (214)ax Ti' -6y as n z

which are evaluated at the crigin, are available from Eqs.

121, 134, and 148, respectively. Also z2 . is available

from Eq. 110. Our problem hence consists mainiy of deter-
L2 112

mining - a and
axa2

At the origin

2(215)

since both sides of this equation express the directional
8V

derivative of -_tx in the direction of a line of flow. Noting

that the direction of increasing sn is outward and normal to
the line of flow, we now have

avs = s + s n (216)
-x Os Ox asn Ox'
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ds

dx

a/

ds ine of flow

which, noting figure above, may be written

- = - Cos + sina. (217)

ax as asn

It follows that

a {-. - -cosa - s sina
asI ~O

TSVs 8Vs s

+ sina + Os- Cosa

At the origin, where a0, this becomes, noting Eq. 215,

a 2 2 a2V

V = s + (218)axI asi asn as'

In a similar manner we have at the origin

a 2v. a f VsL
S 

(
By 2  as n 8y0(29
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since both sides of this equation express the directionalDVs

derivative of 8y i the direction of the outward normal to

the line of flow.

8V 8V DV Dss s as + s n S= 8 ay n(220)

dy

ds

"-ds/ line of flow

or, noting the figure above,

aV DV aV

Dy _s +in O+ s cosa, (221)By 8n

av D8 Vs Ba
-sina Cs8s-• -•y =- nsin - - cosa sD-i-

ns /Y n 49 sn

8v V Dixa82Vs sve

+ - cosa - .-- sin -"
as 2sn n

n

At the origin, where a=0, this become., n.cing Eq. 219,

aaVs 2 V s Da (222)
7y 20sn
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Equations 218 and 222 in Eqs. 211 and 212, respectively, now
give

2V aV BV (a 2

a2Vx 2 s aS - V (a (224)
a2 as2 Os OSn s

n

&v
Continuing with Eq. 223 we note that -T-s is given as a

function of A, z, and 0 by Eq. 139. Along a line of flow A
and z are constant; hence

2V

aOVs = [L 0 VasI 2_Oýa) as*

Applying Eqs. 138 and 139 this becomes, good through first-
order terms in b, [2

2 2q(A,z)Abl - coso

as (r2  -a) 2 [r 2 - A(r 3-a)] 2  (225)

or, replacing q(A,z) by Eq. 156 and hence, in effect by Eq.
161,

2Ab(P--u) - cos(a V s 1 1) (226)
2)s i (r 2-a)[r -X(r -a)]

The second term of Eq. 223 is given by Eq. 142 in which
q(A,z) is replaced by Eq. 156 and hence Eq. 161, and by Eq.

121, which is-!, and Eq. 100; thus
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8 n ,-a) r{2 -a [ Z ]Coso}

[ 2' (227)
+ 2(f-l)b 

1 -
coso.

(r 2 -a) I

The third term of Eq. 223 follows from Eq. 110, in which
q(A,z) is repiaced by Eq. 156 and hence Eq. 161, and from

I
Eq. 21, which is T, and Eq. 100; thus

-) r -X( 2 -a) Xrb Sol (228)

Substituting Eqs. 226, 227, and 228 in Eq. 223, we obtain
finally

a•V
axVx2(fl-v)b 2 298x2~ = r") - cos0 (229)
Ox 2 1L z

(r 2r- a)

good cLrough first-order terms in b.
8v

N~xt, continuing with Eq. 224 we ncte that --s- is given
82V n

by Eq. 142; also S can be obtained by replacing V by
B82 S

DV n
Sin Eqs. 140 through 141. Since, due to Eq. 85,

n

\7ýr a -0 J,

we thus obtain

2 1)( S>
VV N 8X \ asf1) rýV\1 O- A~�80 , (230)
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Substituting Eqs. 85 and 142 in Eq. 230 we see that the
second term in Eq. 230 is of second order in b, and can
hence be omitted. In the first term q(A,z) is replaced by
Eq. 156 and hence Eq. 161, and we obtain finally

tf1\1V r (\2 1
s C6"b 1 - tcoso. (231)aa (r -a)2 L \Z j
n 2

Noting Eq. 214 we substitute Eq. 231 and the expression

for ac given by Eq. 134 in Eq. 224, and thus obtain

8sV
Sn

ay 2 " V- - + (2- ) 1 -cos . (232)

ay OS/ ( 2 -a)KiJC

rrom Eqs. 110 and 139, however, we see that the first term
on the right-hand side of Eq. 232 is of second order in b;
hence good through first-order terms in b we have

L1 -1coso. (233)0 y: 2 - a)2 L

Turning finally to Eq. 213 we replace q(A,z) in Eq. 110
by Ea. 156, and hence Eq. 161. Differentiating twice with
respect to z and placing A--, correspondi,,g to the inner
free surface, we then obtain for the first term in Eq. 213

as V 4ab(P-P).
(r2 -a)z, Cose. (234)

Next we see from Eqs. 110 and 148 that the second term in
Eq. 213 is of second order in b, and can hence be omitted.
Good through first-order terms in b we thus have

8*V
- 4ab(flv) cose. (235)

8z3  (r -a)z
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Putting X=1 in Eq. 85 we obtai.-

ds - r2 +do rd

C 2 (236)
ds-• - pa- b[ - 0z'11cose} dO

for the elenent of a flow line in the free surface. Substi-
tuting Eqs. 229, 233, and 235 in the last equation of Eq. 209;
multiplying by Eq. 236 and integrating, we obtain finally

C s 4Ma2 b(l-v) sin0
0j s R (r2 -a)z 2

2 1

-8juab( P) 1l ( - sin G (237)

(r 2-a)1 2 \ Z in

good through fLirst-order terms in b.

8V
The Term 2u --A This occurs in s At any point of the

free mercury surface let In be a fixed unit normal vector
pointing outward (into the mercury). Then

Vn = 1n.VR = VSIS.1n (238)

since VR r Vsl. It follows that

8V 3V
S= . s + Vs (iI (239)

It is necessary to determine this quantity only on the free
surface. On this surface i I I1 ; hence the f1it term

vanishes. In the second term we note that along the normal
in remains constant, whereas in general is does not. Eq. 239
thus b comes

74
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n V 1• s
a---n = s n a- n* (240)

In order to obtain this dot product we shall determine compo-
nents along the directions of the mutually orthogonal vectors
iso, isn, iz, these vectors being evaluated on the free sur-

face at the base of the normal. Here the subscript o has
been added to s to avoid confusing the fixed vector !s with

the variable vector I., which at the free surface becomes i ,
as shown below. o

tree

Although is is variable, its component along iz is everywhere~
zero; furthermore i.t ts evident that dl•Zls. It tolIows

s

that thc only nonvanishing cevnponen~t of Tnis tLat along 1,n

In Eq. 240 we therefore need •nly that componen•t of in whivh
lies along i~n. The compunent along i~o is, of course, :ero,

sin..e I. is tany•rnt to the free surface.

Noting the following figure and the fact that 1 nLls w'-
see thatr

Component of is that al(41)

in along I Sn
n sn

75
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channel

•dzd

free -urface 4 dSn s in mercury

Moving along dsn from the free surface to the lower end of dz
in the figure above, r and 9 change by amounts dr and do given
in terms of dA by Eq. 106. Starting at the same point and
moving along the free surface to the upper end of dz we have
A=l, dX=O, and

Or Or

dr = o dz + 2-r do, (242)

r being given by Eq. 85. Since dz is vertical dr and do are
the same as before; hence Eq. 242 serves to determine dz.
Substir ttiLn9 Eq. 106 in Eq. 242, we obtain

2 ar Or Or
r aAOr Oro _ -.

Or O= dz

Or

dz ON d__ (243)

Oz

where dA is the change in X corresponding to dsn. Equations
107 and 243 in Eq. 241 now give

Component of _ _

In along 1s Jr /1 1,r
Oz 1/ + ev +r a O
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(244N

Component of - 1 +
1n along 1s i r2•_i•nn V/ \.r 60) \ýz)

Noting Eq. 85 it now follows that

Component of 1 along 1 S- 1 (245)
n

good through first-order terms in b.

Next we shall determine the component of 1 along 1 S
Noting the figure on page 75 we see that s

Component of Is along is = - sina; (246)
n

however, since a=O at the free surface we have in effect

a = da art-- (ds ) -J (adz)(27
ar n normal 8z n (247)n

where the word "normal" has been added to stress the fact
that these Quantities correspond to an element dn of the
normal line, and not to an element of length in the free
surface, as shown in the figure on page 76. However, if the
•riangle of legs dsn and dz in the figure on page 76 be

rotated 90 deg clockwise, we see tiat the quantities dz and
(-ds ) in the figure on page 76 can play the role of
(dsnnnormal and (dzr'inor~mal, respectively, in Eq. 247, in
which case, noting Eqs. 107 and 243,

Or1 1dn /ds +dz' +ri 7 i-7_ --r d.,
n-- 

+ 7-"

or Z, "8r '7_'r
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or, noting Eq. 243,

dn Idz!. (249)

Equiation 247 now gives

de 8e Icdzi Oa dsn
d- = c s dn - z n' (250)

n

wherein the + sign would be obtained if in sloped upward in
the figure on page 76, in which case the triangle would be
rotated 90 deg counterclockwise. Noting Eqs. 107, 248, and
249 this becomes

da 8a 8ar1)
dn 8s -z 0z (251)n

From Eqs. 85 and 149 we now see that the secoind term is of
second order in b, and can hence be omitted. The first term
is given by Eq. 134, thus

da~ 1 s (252)
dn - V as*

Since from Eqs. 246 and 247

Component of sina sinda da
dl dn dn (n
d along I1

at the free surface, it now follows from Eqs. 240, 245, 246,
252, and 253 that

aV OV
n = " -- as (254)

Substituting Eq. 139 in which q(A,z) has been replaced by
Fq. 156 and hence Eq. 161, we obtain finally

re n. , A - 1 sn0. (255)

anr71
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The Term p5.. This occurs in !Y Using the lines of

curvature as parametric lines let us consider an element of
area of the free mercury surface, shown in the figure below.

lines of curvature

NormalR

centers of curvature

ds 1

Denoting the surface tension by T, this being the force per
unit length transmitted across any line in the surface, the
normal component of the force exerted by surface tension
along the sides of length ds1 is

Normal component ds
of forces on sides = T ds 1 - (256)
of length ds 2

where R. is a principal radius of curvature. Here the
reasoning is essentially the same as in the case of a vibra-
ting string or membrane. Adding to Eq. 256 a similar expres-
sion for the normal component of the frrces transmitted along
the sides of lenqth ds 3 , then dividing by the area ds ds we
obLain for the pressure due to surface tension

5 The effect of surface tension is considered here in
connection with the free surface given by Eq. 85 with A-1;
however, surfacc tension was not used directly in determin-
ing this surface.

'79
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P t T + 2TU (257)

where I is the mean curvature of the surface.

In order to compute the mean curvature of the free mer-
cury surface we place A=! in Eq. 85, use z and 0 as parameters,
and have as the equations of the free surface[2

x = r cos0 = a cos8 - b 1 - o 1

y = r sinG = a sinG - b 1 - cos0sinO,

z - Z.

Differentiating we obtain

8x 2bz o
2Co

zi

Oz 2b

z

1

8z
S1;(259)

O - a sinG + 2b i - cos0sine,

a cos0 + b 1 - () in e-cos 0),

Oz .

80 "

Accurate through first-order terms in b the quantities E, F,
and G in 'the first funiamental form are hence$

$Struik, Dirk Jan. Lectures on Classical Differential
Geometry. Cambridge, Mass., Addison-Wesley Press, 1950, pp. 58,
75, and 83.
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E 1

2abz 2 2 oF -2 (-cos inO + cos OsinO)= 0,

1I (260)

G =- a2 + 2ab 1 -(-2 sin2OcosO + sin2Ocose Cos 3)

G a - 2ab 1 -(kz-)cos9;

also

EG - 2 G - 2abl -1 1)2]cose, (261)

from which we obtain as the element of surface area

daf =1 EG-F 2 dzd 0 fa - b [ 1 (i-, jcosOJdzde. (262)

Taking second derivatives we now obtain

8ax 2b 2

8z 2 z

82y 2b
8z- -- cos0sinO,8z 2
8 1z

2
-0;

az4a

-2 =. --4bz cos0sin9,
azo 2

a_ = 2b-z (cos O-sin 0),
Z (263)
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8 zOO 0;

8221xN2 2 2
-0 a cos9 + 2b 1 - (cos 0-sin 0),

a a sinO + 4b 1 ()sinOcosO,\z0 2

2
aoz-
802

Ulsing Eqs. 259 and 263 we now set up the third-order deter-
minants which give e, f, and g of the second fundamental form.
In each case the last column is 0, 1, 0; hence developing by
minors with respect to this column, and omitting terms which
contribute only terms of order two or higher in b to the ex-
pansion of the determinant, we obtain

2b C 2b cosOsinO
2 2

e 1  
zi

- a sinO a cosO

+ •/EG-FP

e • - 2abcos0 + VEG-F2 , (264)
2

zI

- 4bz cos0sinO 2bz (cos O-sin 2 0)
2 2zl z1

f V -II

- a sinO a cos0

+ /EG _F
2

f m 2abz sinG (2cosa6-cos 2+sin2 6)
2

zI

+ JE ýG- F
f 2 sin0 + /G-÷ (265)

z
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- a cosO + 2b 1 - (cos 0-sin 0) - a sinO + 4b1 -s

g = - ,n+,[ :'
- a sinG + 2 bL1.- (e-)2cosesin9 a cosO + b I - Z J(sir 2

\zj/

+ V-EG- F*T

g 6b {a Z sn bo[oJ - 3ab -1( Coso O-s )coso} + __

g {2 - 3abl - (- cs )2 cose(2sin e+cos O-sin 8)} rEG-i

g Q {a 2- 3ab I - Z)2]co} + .

The mean rurvature is now given by

-It E-2fF+eG

2(EG-P.)

2 2 ( cos 2ab
a -3ab 1 - 66 -COO - coso

Lt 2i21J

2 {a 2ab~l z (1.)2]Cos 01

- u {2~a{~ (~ 2 + 2 ( C'i)icse} {f +

- 2ab Co59
2a 2zi

Substituting in Eq. 257 we now obtain finally

t T ( as -I2k coss)

A
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2b 1 - (\ (C] 2 9-sip 29) - a sinG + 4bl - (-]sin~cos9

2 24 1 - t z 2 cosesine a cos9 + b 1 - J (sin 2 OCosa 0)I

z 221 2 2
i)]sin Ocose - 3ab[ I (j- Icos 9-sin 9)cos} + rGP

I~Jcos9(2sin 9+COS3 O-sin e)} + -GP

Z. (266)

lire is now given by

St . gE-2fP+eG (267)
2(EG-Pz)

iZ23ab~l - ( 2 )2 cos8 - 2a 3 - cos9

2 {a -2ab[. i- Co

-a2ab[3-3 )2 + 2 (. ~ 2 cose {Z +- j ) JCos }

cosb .0. (268)2az (a ) )
ZI

257 we now obtain finally

Pt ~- . (1. ij cosG) (269)
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Placing Eqs. 204, 208, and 237 in Eq. 201; and then plac-
ing Eqs. 201, 255, and 269 in Eq. 202, we now obtain

S Pa a (P-P)2I 4- 1 Cos}

+ - paP2 {b[1 - cose

222

COS(8ELL + 41Aa 2b(3-') sn
(r -ia) z

* -(270)

- -ab(P-'p) 1- •iL ]sin6

(r -a) 2 1 z

+ c0 _ z(-p sine
o r2 -a

+ • i - Cose "P
za

accurate through first-order terms in b. This may be written

ZS • + B ,ine + C cosG (271)

where

2a2 2 TX + PP a + PP4+ c +• Pa

W L (2a 2 Apa2 2+p2 ) +,Z . Pa + Co (272)2 a
B paI3' sin - 4pb(fl-v) (r +a) +

(r 2  L(273)

84I J
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S: pab 1 - z) [ra. v'a P2

+ pap 2Tb (274)

zi

If, noting Eq. 262, we also place

D=b[- (275)

then Eq. 203 becomes

K = z5 Y (A + B sine + T cosO)2 (a - cos)dzdG
-z o

1 (276)

= minimum

where Ks is the surface constraint. Multiplying out the

first factor and carrying out the integration on 9 now gives

z

K $ [a(2A +B-+C' ) - 2 A C D -dz minimum. (277)

Next we note that in Eq. 39 P is given by Eq. 173 accurate
through third-order terms in b; and, noting Eq. 92 and the
figure on page 66, (-y 0 ) is Eq. 93 times sinO, accurate
through second-order terms in b. Equation 39 thus becomes

P ba1 2M bag a (#-')V sing (278)

3(r -a=)

whe,'ein both sides are accurate throug% second-order terms in
b. Later we shall see that due to Eq. 291 they are accurate
through third-order terms in b. Substituting from Eqs. 8S
and 172 this becomes

1 sinO K u(P-&')b (279)

es
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where

151, pa a 2 2• !-a- ýr \ -a)
(280)

+ 90+ +78 r

Lj~ 25 2 l

From Eq. 279 it follcws that

• coso = i Tii' (#-' T) • (281)

We rejard • as given, whereupon 0 is determined by Eq.
279, which can be use(& to eliminate 0 from Eqs. 273 and 274.
c and b are now determined so as to minimize the surface
constraint is.. given by Eq. 277. Let us first determine c;.
This we can do by minimizing Ks for an arbitrary choice of b,

bKs

which amounts to equating s--- to zero, Ks being regarded as
0

a function of c a;id b. Noting Eqs. 272 through 275 we thus
obtain 0

z

%5 ( -D)dz = 0 (282)
-Zi

as the relation which determines co as a function of b.
Multi-plying Eq. 282 by 21X, which does not contain z, and
subtracting fiom Lq. 277 we then obtain

-Z

kZ(2A4B2:)z-minimum (283)

as the relation for determining b.

Next, noting Eqs. 272 through 275 we carry out the inte-
gration in Eq. 2M2, and thereby obtain
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4al• 16 3 a•- • •
4azIA- i-5 zpab

4- z 4Pabfl 2 A, zS 2Tb+ I 0

zI

14 2F2a(9-v) ~2 Sb~ 2 2Tb 2 84

-a 3az 2
1

This expression equated to Eq. 272 determines c0, which
appears in X alone. Substituting Eq. 281 in Eq. 284 we now
get

b 2 ý4 I[a(R...u 2i 2TI
AazI

5 L2 a 3azJ
(285)

- pb /t4-p(#-v)/22
3

Equations 279 and 281 in Eqs. 273 and 274 now 4ive, zespec-
t ivr y,

b= b(-P) aK - 4(ra+a) / + (a) a L. z 3 (286)
S(r -a)

L r*-a

_(287)

Spa (P )b 8

Differentiating with respect to b the condition ';1. 283
becomes

SC(2)
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Here A, B, and C are given by Eqs. 285, 286, and 287, respec-
tively; and 4 is constant. Equation 288 determines b as a
function of 4. Noting that X does not contain z Eq. 288 be-
comes

4z[ { hL r.-a L 2]f - 2 T1 42 22222

22
I:k51 [2a(')p 21 ) 2 T

4 2 r 2  2 3 2 T

2b222

-z (t' -a) L c~

L- a -"

(z- ____ Ka 2T2

+ ( P- P) (•. ( a 2a a

-Z (ri a- ,)

1 F/~ -Ks' (a-v)

2T--• ...... ; dz-0.

This expression determines b as a function of 4,, L-• thf
Maclaurin series expansion of this function be

b - b 4 + b 3 + b S +... (290"

wherein the coefficients bl, b3 , ... are unknowh const.?rs,
and the terms containing even •owersof j are omitted bercause
b is evidently an odd lunction of 4. Gond through second-
order terms 4,n t Eq. 290 becomes

8e
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b f b 1. (291)1

Substituting in Eq. 289 we see that the first term is of
third order in ý, whereas the other two terms are of first
order. We therefore omit the first term, the resulting ex-
pression being good through second-ordei, terms in 4. Divid-
ing this by • we obtain the following relation for determining
b .

1

zb 4(r-+a) 2 / 32 2 + ({ ApaKw +Ld\/'fz

1=z " (292)

pa ) -p a z)

[ F2afl..j " 2T paKau (P----a bj dz 0.

I I

Equations 279 and 281 now become

/3 sinO - XKp(3v-)bI , (293)

/3 cos# V- & r/-4.' - (P-v)'b( , (294)

which substituted in Eq. 292 give

2 (r+-a) 'I

16(r +a)zt 4(r 4-a)

3 ,(r-a) ("a "aL
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32(r +a) 2z z sn p (295)

5(r-a) 4 . -Y4)

r|[2aCP-' _ pit] 2 + pap coso p -a -1 (i) I

x [al - .] 2 - paXP(f-v)tanO dz = 0.Ir '2 - a 2

1z

Here 0 replaces b, as the unknown quantity, the two being
related by Eq. 293. The integral in Eq. 295 is

p sinO 2 216 [2a(P-P) 2 _P]2
p(a-P) T Lr 2 -a a
4 pa ___p2] 21t 2 sin (2T
3+ par L rs-a Xi(PP) "x z

1 (296)

- PaKX(P-v)tan) + 2 (i-v ) " + papcas lj

r#sinO T. 2T) ocs.Zl" Z1

+ 2z1 ~jfl (vLa) + PaPacosO] [

- paXL(•-v)tan],1

which in Eq. 295 gives

Ssine + Q cosO + R sinO tan- 0 (297)

where

- (P-P.) [2z P {a - 4( 2a) [I + 1a_ /r-' 12
""K (-•a)
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16(r 2+a )z1 rK 4(r 2+a) 1F (a> /Tr2 -a\,2 -~aK 1 + -j -i
3(r,-a) (r2-a)2 2

32(r2+a)2z 1a 16 F2a(f-p 22

5(r -a) 4 _+ K(-P-) 15 zI Lr2- a p2]

"+ pa-i z , [2a(;g-V) 2 - 12] 3 ;..v (_ 4 T)
22- a) 2

"+ 2zt K2( -) 2z p 2a 2 ft 2KAI#,-P)

2zs 2 A 8(r2+a) 16(r 2 +a)

K [{4 ___

9r -a)2 9C,-a)

(r +a)2 2

2 .1 L6 (1-_ 2.+

+ 4 A SK (9-P a+m-

C(ra-a)

"5-Lpa•[]+ + T2 (s _ 25 2z•p a1•a ( -p)

1 4 1

19

2z3 P 2 A 4(r +a) a- 2 3 a+ ' /a

K (P. p a ( 4r +a) Il Z)ý--+a

Cra-a

45(r 2-a) - " #pTfpaIr-

5T 2 + -5T 2z 1p 3 a /3 Y44(P- )
2za2  4Z4

I I

16z 2~ (23 a a. -)(~ )
(r,_-a) .a
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(< 2 [+a). - PaK} (298)

2 -a (i-(r 2 1) T2+(298)

8(r 2 +a) a 16zIP {2(paLL 2

45(r 2 -a)44) ITK _(P-) 12 \ r2-a

2z2./) 4z 41
1 1

'IP2a 2 2z1 F2a(gp )2 2] 4ap T(9)
1 = r 2 -a " • 14paf3 (9

4 a 2p2 2a(P-K.v _ j + 4 2ap2 T (300)
S= - zL a p z-1a"

We now see that

R=- Q ; (301)

hence Eq. 297 can be written

Psine + Q(coso-sinrbtano) 0

or

Psin~cs¢Qcos !.-sin !_ = 0

P sin2o + Q cos2o) sec = 0 , (302)

tan2o = - 2 . ( -"03),p

Since the tangent has a period A we see that this equa-
tion has a root such that

0 S 2 7< r
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or

0 ý 0 < -- *(304)

Other roots of Eq. 303 can be obtained by adding multiples

of r to 20, or multiples of - to 4. We thus obtain four

values of 0 which satisfy Eq. 303 and are equally spaced
over the complete circle 2r. Of these we retain only those
two which are smaller than r, as is evident from the figure
on page 12 and the fact that Y0 in Eq. 39 must be negative.T

These two values differ by 2' and of them we wish to choose

that one which minimizes Eq. 283, or, what is the same thing
sinceA <<' B, !, choose that for which

z

I (CB + -)dz = minimum. (305)
-Z

That A << B, follows from Eqs. 285, 286, 287, and 291,
from which we see that T. is of second order in ý, whereas B
and C are of first order. Noting Eq. 291 and the fact that
ý is arbitrarily small but fixed, we see that the variable
which we determine in minimizing Eq. 305 is bl, which in
view of Eq. 293 is a measure of 0. The left-hand side of
Eq. 297 and hence Eq. 302 was obtained by dividing
dI by ý, thusdb

1 dI =I dI = sin2o+Qcos2 sece. (306)
T db j b 2b s

Noting 7q. 293 it follows that

1 d2 1 1 __ {b (,)(Pcos20-2Qsin2-)sec0
Sdba i a db,1  9 coso

1 dO (307)

+ -sin2O + *cos20)sec¢tan@}

93



NAVWEPS REPORT 8611

The two values of 0 which we have retained satisfy Eq. 302.
For each of these Eq. 307 becomes

- a (Pcos20-2Qsin2t). (308)
db1l Pl cos4•

Since P v and K is positive due to Eq. 279, the sign of

this expression is that of

P cos20 - 2Q sin2O . (309)

Since our two values of 0 differ by M we see that Eq. 309

has the same absclute value for both, but opposite signs.
We choose that value of 4 for which this sign is positive,
corresponding to a minimum of I (for fixed ý), and discard
the other value of 0, which corresponds to a maximum.

We see from Eq. 303 that the two possible quadrants of
24, and hence the two corresponding 45-deg sectors of 0, are

determined by the sign of q, For each of these the signs of
P.

sin2o and cos2o are also determined. It follows that for
each of these the sign of Eq. 309 is determined by the signs
of P and Q. Given the signs of P and Q we can hence see im-
mediately which 45-deg sector must contain 0 in order that
Eq. 303 be satisfied and Eq. 309 be positive. These sectors
are as follows.

Sign of P Sign of Q Sector containing

+ 0

-- < <i

2 +_

+ + I<0< r

In any particular case once the signs of T and iý have been
determined, this table specifies the sector which contains 4.
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DETERMINATION OF TIHE DAMPING CONSTANT
AND PRECESSIONAL ANGULAR VELOCITY

Now that we have deterjmined 0, b follows from Eq. 279,
after which x follows frcm Eq. 93. Noting that the xy-axes
of the figure on page 31, nave their origin at S ana are
rotated clockwise by an angle * from those in the figure on
page 12, whose origin is at W, as indicated in the figure on
page 66, we see that x 0 and y 0 on page 12 are given by

X0 + cos t +2ba 2coso
xo= • + x os= • +2bcs

3(r -a)

+ 2a2 P Asin±cos± >
3(r -a )• (P-V)

(310)

yo=" x sino 3( 2_ba 2sn
2

(24 ~ 2b a s2si 0 -3 (r -a )

(22

_ 2a2•sinS• •

These are the coordinates of the center of gravity of the
m.ercury. The components of the force exerted by a damper
on the main spinning body now follow from Eq. 30, thus

IF, I .y0fl2 = M02 (2a 2- 0 a sin a 0•z
23 ( 2 -&)

a (311)

IF. I M 0 a = Pox (ý + 2a sin>
a0 3(rx-a )a (P-P)

also the torque components exerted by a 2.i of dampers on
the main spinning body are given by Eqs. 32,34, and 311,
thus

x component of torque k X4,

y component of torque k ky , (312)

z component of torque k 4
z
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where
i2

k = MIS Lk sino,x

S= Mg2 L(2 + k cosO), (313)
'k

k= Mf2k sinf =kz

and

k = 4a2inb (314)23 2
3(r, -a )KU(f-P')

We note thar the coordinates in F(. 310, Lhe force components
in Eq. M11, and the x and y torque "cmpýnen>j in Eq. 312 are
all, closely, proportional to 4, sii 'e in '.,ese expressions
the coefficients of ý depe-id upon 9 ant. , which vary but
little. The z compunent ot torque, however, varies as 02.

From Eq. 312 we ncw have

kz 2
A *1 5 (315)

hence good through first-or er terms in ý, v is constant.

The results given by the approximate picture presented
"1 the last part of the section between pages 7 and 14 now
follow from Eqs. 35 and 37, which give

k L
S=x (316)

Av

Reduction in preces- AY k L

sionaI angular velo- B " (317)
city

Hler.. Eq. 31Y can be used to determine '. Starting with the

approximate value J) Q A-we determin, the ri.ht-hand side cf
BAv

Eq. 317, which is the amount by which -- must be reduced to

give the next approximation to •. Repeating this pocess

96
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using the corrected value of P we obtain the next approxima-
tioil to f--anu qo on.

In Eq. 316 the coefficient of 6 is essentially constant;
hEcnce 4 is, closely, a dying exponential, the damping factor
(coefficiert of t in the exponential) being

k L
X ?3018)

The negative reciprocal of a is the time constant.

The results given by the approximate picture presented
previously (pp. 25-28) follow from Eqs. 73 and 74, thus,
noting Eq. 312,

d -k L

or, if p is considered to be essentially constant,

k L
= - -s--(319)

B30

Also

(AP-Bp) =k t,L y

or

Reduction in preces- Av k L
sional angular velo- -" " (32()
city BO

The damping factor corresponding to Eq. 319 is

k L
_-A (321)

Equation 317 Aiffers from Eq. 120, and Eq. 318 differs from
Eq. 321 in that Av appears in place of B8; however, the rdtio
of these two quantities shoulo approximate unity, since
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B % approximates . It follows that the results given by thr

two pictures are in approximate dgreentent. It may be noted
that in Eqs. 319, 320, and 321 # is the angular velocity
seen by an observer who is located at the instantaneous
center of curvature of the path of S.

APPLICATION OF PROCEDURES FOR LINEAR
DIFFERENTIAL EQUATIONS

Since the coefficients of ý in the first two equations
of Eq. 312 are closely constant it appears that we can check
and perhaps improve the treatment in the section on pages 25-
28 by using the methods available for solving systems of
linear differential equations. Let us choose a stationary
set of XY axes in the plane of the upper damper with its
origin at W,_in the vicinity of S, as shown in the figure
below. • WS, and is hence the x coordinate of S. Knowing

V

the torque components aJong the x and y axes from Eq. 312,
we can obtain those along the X dnd Y axes immediately, thus

X component of torque k x coso - k Y sino

=k X - kyY,
X (322)

Y component ori torque k x sinC + k y cosO

= k V + k X
x y

98
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The di.:ferential equations for the motion of S are hence,
closely,

X + _ k Y +k XL L " x y
(323)

Av k B x X .k y,'

or, denoting d-by D,dt

(BD2 - Lk )X + (AvD - Lk )Y 0
y x

(324)
(AvD- Lk )X- (D -Lk )Y = 0.

x y

EquaUing the determinant of the system to zero we obtain

(BD 2 -Lky) (APD-Lk )

(APD•Lk -(BD2  = 0, (325)

× y

-(BD -Lk ) - (APD-Lk x) a 0,

BD- 'Lk - i(APD-Lk x), (326)

Equation 325 is a quartic polynomial in D, whose four roots
are composed of the two pairs of roots of Eq. 326 that are
obtained for the two possible signs. Since it is evident
that the conjugates of the two roots obtained for one sign
in ED. 326 are roots of this eq-uation with the opposite
choice of sign, it follows that we need consider but one
sign. Choosing the plus sign Eq. 326 may be written

BD2 - iAPD- L(k-ik ) x 0; (327)

henc 2!

D -k V ly * -P1v+48L(kv-lk)
2 X

~. - -• - -i .-- - .i, •i - - .•- - --l- - - - - -9
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D=.iAL 4l v'1---;(k) 1(328)
2B L y,

For either choice of sign we obtain a root, whose conjugate

is also a root of Eq. 325, thus

D=a ip. (329)

Corresponding to such a pair of roots we have a mode, for
which che damping constant is a, and the precessional angular
veloc~ty is P(P > 0).

a and p can be obtained exactly from Eq. 328; however,
by applying the binomial theorem to the radical in Eq. 328
we can obtain the following approximate exprezsion

•-D =iAY 11 F 1 1 / BL (kx)
"2--B 2 A•l +2 a \

1. 3DiAV[

D + 1--- 1 -2BL (k -ik)

2D "; 1 A* 2L (k A
2B ~.L A P2 X (330)

,2BL a ]
2B L (ky'k 'i2kk) +

A44V_ V X Xy J

Noting Eq. 329 this gives for the plus sign

Lk k X y
D Y - - 3, 43

A V (331)

+ L- ±X T3 +A , Av y x) + ..-

whence
Lk 2E L k X,

a -A ; A V 3 .+( 3 3 2 )
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A 'LkY BL- (k 2 -k ) +_-APV A A3 3 y x ..

We note that through first-order terms iln kx and k Eq. 332
agrees with Eqs. 317 and 318. a

The corresponding mode can be obtained using complex
notation for damnped sinusoids; thus if X and Y denote the
complex numbers corresponding to X and Y, respectively, and
D = -, ig the differential eqoations (Eq. 324) become

2(BD -Lk )X 4 (AvD-Lk )Y = 0y x

(APD-Lk )X - (BD 2-Lky ) = 0.

The solution of this set or linear, homogeneous, algebraic
equations can De written down immediately by noting that X
and Y are propo;-tional to the cof actors of the elements of
either row of the determinant in Eq. 325--say the first,
thus

=. a L c(B (-Lk ),

Y - cI (AvD-LkX)

7 Complex notatin'n for damp d sinusoids can easily be ob-
tain.•d as folo•..w. Let a one-to-one correspondence between
damped sinusoids of fixed damping constant a and angular fre-
quency w, and points of the complex plane be defined by the
re II it i,,I% t

Ac sin(wt+O) ~ A 0 - A(coso+isinO);

thtern it can readily *e shown that the complex number corre-
soording to a linear combination of damped sinusoids, all
having the same a and w, is equal to that same linear com-
bination of thQ complex numbers corresoondirg to the compo-
nent damped sinusoids; also that the complex number corr'e-
sponding to tae time derivative of a damped sinusoid is
equal to (c+iw% times tie complex number corresponding to
th��iamped ý,inusoid itself.
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where c, is an arbitrary complex constant. Since Eq. 326
with the plus sign is valid Eq. 33Y becomes

S= ic , (335)

Y=c

where c = Icl Z 0c is an arbitrary complex constant. It
follows that

X = Icl E cos(t+O c),

Y = Icl E sin(ft+c); 
(336)

also

= X = Icl Eat (337)

Thp phase of the damped sinusoids Eq. 336 is hence such that
S spirals around W with an exponentially decreasing radius.

It might appear that another mode can be Gbtained by
using the minus sign in Eq. 328, and that the motion of S is
a composite of the two modes; however, for the torque equa-
tions (Eq. 312) to be valid it is necessary that the origin
be at W, on the precession axis. Furthermo:n with the minus

sign the value of ft obtained approximates Av, as can be seen
Az'

trom Eq. 330. At this extremely low precessional angular
velocity the above analysis of the action of the mercury
damper, upon which Eq. 312 is based, is no longer valid.

POLAR FORM OF THE TORQUE DIFFERENTIAL EQUATIONS

Referring to the figure on page 98 we note in regard to
the motion of S tnat

Radial component of velocity - 4,

Transverse component of velocity - •O. (338)

Radial component of acceleration =-•,

Transverse component of acceleration - 2ii+19.
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Noting that / = 9 it follows that

1 (2pj3+ýp) = 2
-L xBB

B �+ Av

closely where 2rx and 2ry are the x and y components, respec-
tively, of the total torque exerted by both dampers on the
main spinning body. These relations may be written

(Av-2B#)i - B 2L (339)

Bi + (Av-BO)3 = 2LT
y"

Applying Eq. 339 to the case just considered in the
previous section we have, noting Eqs. 312 and 337,

0= ,, • a •, / = O, 2 Tx = kx, 27"y k (340)

hence

(AP-2B#)a = Lk x

Ba 1 + (AP-Bl)f = Lk .
(341)

These relations may be written

Lk
a x (342)S=AP-2BP'

AP _k as
T " 3 " (343)

which give the damping constant and the reduction in the pre-

cessiortal angular velocity. Again we note that since AP
B

approximates /3, Eq. 342 is in approximate agreement with Eqs.
318 and 321. In using £qs. 342 and 343 ft is first assignedAav
the approximate value A', and a first approximation to a

calculated from Eq. 342. This and the approximate value of
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p placed in the right-hand side of Eq. 343 give the amount
APby which B must be reduced in order to obtain the second

approximation to p. Using this instead of -A we can now

repeat the above process to get a second approximation to a,
a third approximation to P, and so on.

Finally we note that the equations (Eq. 339) provide a
better means of determining damping behavior and precessional
angular velocity than does the method described in the sec-
tion on pages 25-28. We shall see that these equations will
prove useful in considering the* case of the crescent configu-
ration of the mercury, for which the torque components are
given by expressions which differ greazly from Eq. 31-2, and
for which therefore linear differential equation procedures
cannot be used.

CASE WHERE THE MERCURY CONFIGURATION
IS CRESCENT-SHAPED

We shall next consider the case where the mercury is
crescent-shaped, and completely tills an angle 2 0m of the
channel, or race, the flow being turbalent. In so doing we
shall use the same notation which we have been using in con-
nection with the eccentric ani,ular configuration. Instead
of the figure on page 31 we now have the configuration shown
in the figure on the following page. The volume of the mer-
cury is evidently

Volume of /20mu - 2 2 4=- -- m2z ir(r 2 ~r 2z 0 (r -r ).(344)mercury \2 ir- -1m 2 1

Again. denoting the x coordinate of the center of gravity of
the mercur, by x we have

0 m r a zIx times mercury r 31 •r •cos'd'drdz .
volume ý_m I zl

4 z I 5 _ r ) i n
"= "- (r -r ;

3 0
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channel

r

z

hence dividing~ by Eq. 344

X IF inG-- (345)
3 2 1

or

2 X~~-~ (346)

105



NAVWEPS REPORT 8611

i• Y channel

S/ ~rm

_----center of

gravity ofN mer-cury

Here Om is determined by Eq. 344, since the mercury volume
is known.

If, as before, we observe the system while riding with
axes which rotate cournerclockwise at the precessional angular
velocity ft we see the configuration shown in the above figure.
Noting the figure on page 12 we now take moments about S, as
described in the section on pages 15 and 16, and thus obtain

3 a
IF1  = K0r (P-P) (347)

Here rm is the mean radius of the mercury, and rm(o-&') is the
velocity of the mercury relative to the channel. K is a co-
eificient obtained from Ch~zy's formula, which coefficient
depends upon the shape of the channel, the area of the surface
of contact of the mercury with the channel, and the density
and viscosity of the mercury.$

I Rouse, Hunter, ond J. W. Howe. Basic Mechanics of

Fluids. New York, Wiley, 1953. P. 149.

2.06
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Noting Eqs. 32, 34, and the fact that there are two
dampers we obtain the following components of the torque
exerted by the mercury on the main spinning body.

Total x component of torque = 2 TX = 21FIIL (348)

2LK rm3 (O-)
2

=Om

Total z component of torque = 2T z = 21FI •

K3  2  (349)= 2K0R atm )

Equation 347 in the first equation of Eq. 30 now gives

K r3 (-P-)

YO 0 M2 (350)

whence, noting Eq. 346 and the figure on page 106,

sino = - -, (351)

which relation Cetermines 4. Again noting the figure on page
106 we now have

x 0 t + x coso, (352)

whence the second relation in Eq. 30 gives

IF 21 = P 2 (,i-cosO). (353)

It now follows from the second equation of Eq. 34 that for

the two dampers together

Total y component of torque - 2r 21F,ILY "(354)

- 2LM, (Q+Xcos#).
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Equating Eq. 34", to AP we obtain for the rate of iLncrease
of the angular velocity of spin

3 2

2K r m(P-P)2
0 OmV A (355)

Finally let us apply Eq. 339 to the present case in
order to obtain information on tI'ie damping and the decrease
in precessional angular velocity. In so doing we shall
neglect the variation of g and P. SubstitVting Eq. 348 in
the first equation of Eq. 339 and placing P=0 we obtain

2L2 K r 03-i)

(Av-2Bfl)j 0 (356)

Letting 0 denote the initial value of • we separate variables
and integrate, thus

2 2
0. 0) 2 3 2

(AP-2B/3l 2 2LoK 0Kr m(fl-P) t

or

-4L2 K r (3C-V)
22B/-Av t. (397)

Finally we substitute Eq. 3S4 in the second equation of

Eq. 339, divide by B, and solve for the binomial - )

The decrease in the precessional angular velocity is thus
found to be

p [2LM3~-c~-~J (358)

Her, it is likely that in the bracket • and • cart be neglected;
but this can best be decided in specific numerical cases. In
this connection we no•.e that

1-8
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2L ,2LK r3 (P-i') 22
3s \ B , (359)

which can be obtained by differentiating Eq. 357 twice.

Several things are immediately evident from the above
analysis. First, we see from Eqs. 50 and 351 that as J de-
creases during the course of the damping (-y0) and 0 increase.
The smallest value of ý that is compatible with the crescent

configuration is that for which -y 0 = x, in which case @ .
For smaller values of Z the mercury configuration becomes ec-
centric annular.

Second, we note from Eq. 357 that ý decreases paiabolli-
cally instead of exponentially, as 3hown below. The rate of

0 crescent configuration

stransition phase
st rin 2.g ht eccentric annular

lne conf iguration

0 t

damp4nq increasps as decreases, and is greatest just before
the crescent flow breaks and goes over into the eccentric
annular. In fact differentiating Eq. .357 we obtain

/2L ",r,(P•Y) (360)
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from which we see that the rate of damping varies inversely
as ý, closely, instead of directly as ý, which is the case
with the eccentric annular configuration.

"Linally, we see that since the first part of the curve
of 4 against t is a parabola which is concave downward, and
the last part of this curve is a damped exponential, which
is concave upward; and since there is an intermediate part
of this curve which corresponds to values of t for which the
flow is eccentric annular but very eccentric; it follows
that the ýt curve as a whole has, if differentiable, a point
of inflection, and in any case should be capible of being ap-
prcximated by a straight line over an appreciable range.
Such a straight line is shown dotted in the figure on page
109.
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Appendix A

EFFECT OF THE TILT AND THREE DIMENSIONAL NATURE
OF THE DAMPER ON THE FORCE WHICH IT EXERTS

ON THE MAIN SPINNING BODY

The force exerted by the mercury on the main spinning
body was derived on pages 8-12. In this derivation the
damper was considered to be essentially two dimensional, its
plane being fixed, and i.ts motion being in this plane. This
simplified the -derivation, and gave for the resultant force
exerted by the mercury on the main spinning body a force
which lies in the plane of the damper. Actually the damper
is three dimensional, and is tilted slightly. This gives
rise to a torque, which may shift the resultant force away
from W, and which may, in addition, give rise to a torque
whose vector is parallel to that of the resultant force.
The purpose of this appendix is to refine the above deriva-
tion, taking into account the tilt and three dimensional
nature of the damper, and see whether or not the results ob-
tained differ appreciably from those obtained above.

Determination of FL. Let us place a set of xyz axes with

the z axis coincident with the precession axis, the +z direc-
tion being outward away from the body, and the positive x
axis passing through the center of gravity of the mercury.
Noting Eq. 6 it follows that

FL SM 0(ix+jy)dm = 02 (i S x dm + j y dim)

FL= i(2M x

where the integrations extend throughout the mass of the
mercury, and i is the x coordinate of the center of gravity
of the mercury. We thus see that the total centrifugal force
is identical with that obtained by concentrating all mass at
the center of gravity. This reeult is in agreement with Eq.
14.

ni ..
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Determination of Fe. Equations 15 and 16 are formally

valid in the present case; hence we again obtain the result
(Eq. 17), namely

FC = 0. (A2)

Since the total Coriolis force is zero the total force -F is
composed of FL alone, as before.

Determination of rL. Let us place a set of xyz axes with

the z axis coincident with the precession axis, the positive
z direction being outward, and the positive x axis passing
through S, as shown in figure below.

z Z1

0 x

Precession
ax is

Sin axis

L

C.G. of main spinning
body

The torque vector due to the centrifugal force field, calcu-
lated for the origin 0 iL then, noting Eq. 6,

rL= 02 (ix+jy+kz) x (ix+jy)dm
M

2 jij k
= xy Z dm

M x y0
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TL I3 (- i yzdm + 5 -ý xzdm). (M3)

Next let us place a set of x~y~zi axes with the z. axis
coincident with the spin axis, the positive direction being
outward, the origin at S and the positive xI axis passing
through the center of gravity of the mercury (see figure on
previous page and the figure below). The xyz and xy, z1

SDamper

/

coordinates of any point are then related by the equations

x = x1 cosO cosa + Y sinO cosa + zI sina + L sina

y = - XI sin 0 + y 1 cosO (A4)

z = - x1 cosO sine - yI sinO sina + z cosa.

Substituting Eq. A4 in Eq. A3 we obtain

T L =3. [xI sinO cosO sina

"y1 sino coso sina - xly1 (cos 2 -sin2 4)sina
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- xzI sinO cosa + y zI cosO cosa]dm

+ j P2 . [- X2 cos 2  sina cosa

- y2 sin 2 sinic cosa + z sina cosa

1 1

- 2 x y1 sinO cosO sina cosa

+ x zIcosO (cosaa-sin2 a) + yIz, sine (cos2a

- sin2 a) - x1L cos4 sin2 a - yIL sinO sin2 a

+ z1L sina cosa]dm.

Since the xyi plane and the xlzl plane are planes of sym-
metry for t e mercury the various products of inertia vanish,
leaving

TL = - i P9 sinO cosO sina ( (x2-y)dm
M

" j P,2 sin~a(x 3+y) a (y a-X 2)cos20 (AS)
f-4 M I I1

"+ 2z 2 ]dm - MLx1 cosO sin al

where x, is the x, coordinate of the center of gravity of
the mercury. 7 1 and z, are zero because of symmetry. We
shall next digress long enough to compute the relevant
integrals using the procedure and cylindrical coordinate
system already used in Eqs. 87 and 90. In so doing we shall
omit terms of order higher than one in b.

We have

2_ ) z 1 2.2 r r2 (cosa 0(x-y az -b[l - •?)cose

- sin 2 )rdzd~dr
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zl Sr 4-a 4 +4a3b[1 - Z )Cosecos20dzdO

= 0, (A6)
zT-

(x +y2)dm=p z $ S$ r 3 dzd~dr

M ý z I a -b[ 1 -(ji--) 2 ]CosaYMX1y)d ýp•z zo Iy'

z

l4 3

$ 2 (r_-a 4 )dz

=pr z (r -a 4), (A7)

Mz2dm= p z 1 2 2 z rdzdOdr

I a-b 1 <iýz ) .iCOSe

j Sz A z2{ -a2+2ab[1- (,z-) ]cos }dzdO
1z

z
= pr(r2-a ) z a dz

2 3

2 pr(r 2_r-a )z . (A8)

Equations A6, A7, and A8 in A5 now give

T Q J p [-2 sin2a ,r(ra-a )z,(4Z2-3r -3a 2
(A9)

- MLU coso sin a.
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From Eq. 291 we see that b ana b are of the same order;
hence since

= L sina (A10)

it follows that ý, b, and sina are of the same order, and
the last term in the bracket of Eq. A9 can be omitted. Sub-
stituting from Eq. 89 we then obtain finally

, 2--2 M sin2a (4z -3r 2 -3a2). (All)
.U 24 1 2

Determination of Tc. First we note that sinco F C= 0, as

indicated by Eq. A2, the torque vector due to the Coriolis
force field is independent of the point for which it is cal-
culated. We may therefore uhoose S as the point for which
we calculate TC. Next we note that since the cross product
is distributive TC may be regarded as the sum of the contri-
butions of the followingcomponents into which the preces-
sional angular velocity g is resolved.

1. ( cosa in the +z direction,

2. ( sina coso in the -x direction, (A12)

3. ( sina sino in the -y direction.

We shall now compute these contributions.

The Coriolis forces on two symmetrically placed equal
elements of masb dm due to the first of the components (Eq.
A12) are shown in thc- figure at the top of the following page.
It is now evident that the four Coriolis forces which act on
four equal elements of mass dm symmetrically located at points
(x.,•y , ,±zj) together have a resultant which passes through S,
ana hence contributes nothing to the torque vector for this
point. Since the mercury may be regarded as composed of such
sets of symmetrically placed mass elements it follows that
the contribution of the first (and largest) of the three
angular velocity components (Eq. A12) to TC is zero.

Turning to the second of the components in Eq. A12 we
bave the situation shown in the figure at the bottom of the
following page, where ® indicates "up" ande indicates "down".
The resultant of these forces is a couple whose vector points
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Y1

Mercury

Coriolis force

SX1loriolis force

v a'
(D •"" R
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in the direction and is the desired contribution to rc,
We wish to determine this accurate through first-order terms
in b. But the angular velocity component has a factor sina,
which, we saw above, is of first order in b; hence in comput-
ing the moment of the Coriolis force system about the y1 axis
we may place b=O in the expressions which give VR and the
shape of the mercury. In this way we obtain directly the
desired first term in the Maclaurin series expansion of the
moment. Under these circumstances we see the mercury as an
annular ring with no eccentricity rotating clockwise with
angular velocity (a-P), as shown below.

Yi

r

X1

Using cylindrical coordinates for the integration we obtain
for the desired moment

Moment w2p#sinacosO Y S0  ) (P-")rcosfrcosOrdzdOdr
-zL a

p13(-i'v) sinacoso(r 4 4)w2z

1 32
Momen~t z i Mfl(fl-v)(r.+a )coso sina. (A13)
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The contribution of the second component in Eq. A12 to Tr is
a vector having the +yI direction and the magnitude (Eq. A13).

The third component in Eq. A12 can be treated in the
same manner as the second. Since the two are perpendicular,
and one has 3: factor sino wherecs the other has a coso, cor-
responding modifications must be made in the contribution to
rC. Noting Eq. A13 it follows that the contribution of the
third component of Eq. A12 to "C is a vector in the -x direc-
tion of magnitude

Magnitude 2 1 Mftp-v)(r2+a 2 )sinO sina. (A14)-2 2a

If these two vector contributions are resolved into cowtpo-
nents along the x, y, and z directions and combined, we find
that TC consists of a vector extending in the +y direction
and given by

Tc a j I ½ f-)r+ 2)ia A5

In view of Eqs. Al and A2 we see that the expressions
in Eq. 311 for IFjI andIF II remain valid in the present case.
We note that these are of first order in S and hence b. It
is for this reason that expressions accurate through first
order-terms in b are adequate in computing torque vectors.
The torque vectors rL and rC, given by Eqs. All and AIS,
respectively, are evidently provided for by letting the force
compone..t vector Fr act at W as before; but moving the point
of application of the component vector F to a point on the
precession axis whose distance from, W is

Distance from j component of (rL+TC)
F to W U I IF 2

21- + 2a1 312 sinocos ) (A16)
3(r, -a )K2 (/- ))

X (3r, z+3d ) -4z -( ) (r:+as)}

toward the center of gravity of the main spinning body. Here
IF, I is given by Eq. 311.
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We have seen that the torque on the main spinning i.ody
due to F1 is of importarice in determining the damping factor
a aid the rate of increase of the spin velocity t, whereas
the torque due to F2 is of importance in determining the
shift in the precessionel angular velocity P. We have not
altered F , and have chenged only the point of application
of P2. T~e following final results are now evident. The
three dimensional naturE of the damper and its tilt require
no correction whatever in the damping factor a or the rate
of increase in spin velcitT7-. The shift in precessional
angular velocity is affected by this refinement, and can be
gotten by replacing L by [L-distance given by Eq. AI.] in
the expression for ky in Eq. 313 before using it in Eq. 317.
We are really interested, however, only in the damping factor.
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Appencix B

OUTLINE OF THE PROCEDURE FOR SOLVING A PROBLEM

A. Eccentric Annular Configuration

1. Determine a, the inner radius of the mercury
with no wobble. This can be done using Eq.
89.

2. Determine K using Eq. 280.

3. Tentatively placing

Av (B1)

detx:-mine P from Eq. 298, and Q from Eq. 299.

4. Determine @ from Eq. 303 and the table on
pagc 94.

5. Determine k from Eq. 314; then determine
k x, k , and k from Eq. 313.y z

6. Obtain v from Eq. 315, ( B " from Eq. 317,
and a from Eq. 319. - /

If desired the calculated va~ue of -A can be used to

give in improved value of g, which can then be used to replace
Eq. BI; and the subsequent calculations repeated, and so on.

B. Crescent Configuration

1. Determine Sm from Eq. 344.

2. Determine rm, the mean radius, from the relation

r (r - ) r (B2)
m 2 1

3. Determine X. from Che'zy's formula, which is de-
scribed in the reference (tootnote 6) on page
106, and in other books on applied '.drodynamics.

4. Tez.tatively placing

a MD k83)
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P is given by Eq. 355, the motion of the spin

axis is given by Eq. 357, and B- is given

by Eq. 358, in which ý and i are given by Eqs.
357 and 359, respectively.

If desired the calculated value of (A-v2 which is now a

function of t, can be used to suggest a va e of P which
supersedes that given by Eq. B3, after which the subsequent
calculations are repeated; and so on.

The time at which the wobble would disappear if the
crescent configuration did not go over into the eccentric
annular configuration is given by placing ý=0 in Eq. 357 and
solving for t. Actually, a3s stated on page 109, the crescent
configuration cannot persist for values of t which are smaller
than that given by equating - y 0 , given by Eq. 350 and 7,
given by Eq. 346. The value of t at which this value of t is
reached is given by Eq. 357.

NOTE. In this report the analysis of the eccentric an-
nular case is intended for use only in connection with large
mercury dampers, wherein surface tension plays but a small
role. (See footnote 5, page 79.) In any particular case it
is hence necessary that the terms in the calculations which
are due to surface tension be relatively small.
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